Publications by authors named "Abbasian V"

Digital holographic microscopy (DHM) is an intriguing medical diagnostic tool due to its label-free and quantitative nature, providing high-contrast images of phase samples. By capturing both intensity and phase information, DHM enables the numerical reconstruction of quantitative phase images. However, the lateral resolution is limited by the diffraction limit, which prompted the recent suggestion of microsphere-assisted DHM to enhance the DHM resolution straightforwardly.

View Article and Find Full Text PDF

We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability.

View Article and Find Full Text PDF

There is an increasing interest in non-destructive and real-time high-resolution approaches for corrosion studies in metals. In this paper, we propose the dynamic speckle pattern method as a low-cost, easy-to-implement, and quasi in-situ optical technique for the quantitative evaluation of pitting corrosion. This type of corrosion occurs in a specific area of a metallic structure and causes holes formation leading to structural failure.

View Article and Find Full Text PDF

Microsphere-assisted microscopy utilizing a microsphere in immediate proximity of the specimen boosts the imaging resolution mainly as a result of an increase in the effective numerical aperture of the system.

View Article and Find Full Text PDF

Imaging of cells is a challenging problem as they do not appreciably change the intensity of the illuminating light. Interferometry-based methods to do this task suffer from high sensitivity to environmental vibrations. We introduce scanning diffractometry as a simple non-contact and vibration-immune methodology for quantitative phase imaging.

View Article and Find Full Text PDF

The myelin figure (MF) is one of the basic structures of lipids, and the study of their formation and the effect of various parameters on their growth is useful in understanding several biological processes. In this paper, we address the influence of the pH degree of the surrounding medium on MF dynamics. We introduce a tunable shearing digital holographic microscopy arrangement to obtain quantitative and volumetric information about the complex growth of MFs.

View Article and Find Full Text PDF

Mueller matrix microscopy (MMM) is a powerful approach to probe microstructural and optical information of many important specimens (e.g., tissue and bacteria), which otherwise cannot be obtained directly from intensity or spectral images.

View Article and Find Full Text PDF

Nature creates soft and hard ingredients revealing outstanding properties by adjusting the ordered assembly of simple primarily components from the nano- to the macro-scale. To simulate the important features of native tissue architecture, wide researches are being performed to develop new biomimetic custom-made composite scaffolds for tissue engineering. Here, we introduced a three-dimensional (3D) biomimetic scaffold based on the cuttlefish bone (CB) as a sacrificial template for bone tissue engineering.

View Article and Find Full Text PDF

The aim of this paper is to introduce digital holographic microscopy (DHM) as a non-contact, inexpensive, and non-abrasive method for 3D surface characterization of polymeric nanocomposites. A common-path and vibration-immune Mirau system with a microsphere-assisted arrangement is utilized to increase the lateral resolution of the images. The characterization is performed through the measurement of roughness parameters of the surfaces, which are derived from the recorded holograms.

View Article and Find Full Text PDF

In this paper, we use a glass microsphere incorporated into a digital holographic microscope to increase the effective resolution of the system, aiming at precise cell identification. A Mirau interferometric objective is employed in the experiments, which can be used for a common-path digital holographic microscopy (DHMicroscopy) arrangement. High-magnification Mirau objectives are expensive and suffer from low working distances, yet the commonly used low-magnification Mirau objectives do not have high lateral resolutions.

View Article and Find Full Text PDF