Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks.
View Article and Find Full Text PDFSelf-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks.
View Article and Find Full Text PDFThe dynamic interactions of an individual matrix metalloproteinase-1 were imaged and monitored in the presence of either triple-helical or non-triple-helical, partially structured collagen-mimic substrates. The enzyme exhibited ten-fold increased catalytic turnover rates with the structurally modified substrate by skipping the triple-helix unwinding step during the catalytic pathway.
View Article and Find Full Text PDFImproving the therapeutic index of anticancer agents is an enormous challenge. Targeting decreases the side effects of the therapeutic agents by delivering the drugs to the intended destination. Nanocarriers containing the nuclear localizing peptide sequences (NLS) translocate to the cell nuclei.
View Article and Find Full Text PDFUsing single-molecule approaches, we directly observed the dynamic interaction between HDAC8 and various ligands as well as conformational interconversions during the catalytic reaction. Statistical analysis identified key kinetic parameters, demonstrating that the enzymatic activity is highly sensitive to both minor variations in the ligand structures and small synthetic molecules.
View Article and Find Full Text PDF