Publications by authors named "Abbas Raja Naziruddin"

Incorporating water-insoluble nitric oxide (NO)-releasing molecules into biocompatible vesicles may allow for the tunable control of NO release on a specific target site. In vesicles, membrane fluidity plays an important role and influences the final therapeutic efficiency of drugs loaded into the vesicles. Hence, we aimed to investigate the effect of lipid fluidity on the NO release behavior of the photo-controllable ruthenium nitrosyl (Ru-NO) complex.

View Article and Find Full Text PDF

Platinum complexes featuring pyridine bis-N-heterocyclic-imidazol-2-ylidene/-mesoionic-triazol-5-ylidene donors as pincer ligands and chloro (-Cl), acetonitrile (-NCCH3) or cyano (-CN) groups as auxiliary ligands are prepared as highly strained organometallic phosphors. X-ray structures of four of these complexes confirm a distorted square planar geometry, where the pincer ligand and its mesityl wingtips occur in a twisted conformation to each other. Electrochemical and photophysical characterization have been carried out and the experimental results are interpreted with the aid of density functional theory calculations.

View Article and Find Full Text PDF

Photoactive platinum complexes of stoichiometry [Pt((R)CCC(R))L](0/+) (R = Me, nBu and L = -CN, -C≡CPh, -N≡CCH3, -Py, -CO) featuring pincer-type bis N-heterocyclic carbene (NHC) ligands ((R)CCC(R)) were synthesized. Organometallic syntheses of these complexes are facile and achievable through standard laboratory procedures. Control of intermolecular Pt⋅⋅⋅Pt interaction, π-π stacking, and emission tuning is achieved through suitable choice of the NHC-wingtip substituent (R) and the auxiliary ligand (L).

View Article and Find Full Text PDF

A bidentate C^N donor set derived from an N-heterocyclic carbene (NHC) precursor linked to a trifluoromethyl (CF3) functionalized pyrazole ring is described for the first time. The ligands have been employed to prepare four new phosphorescent complexes by the coordination of platinum(II) centres bearing cyclometalated phenyl-pyridine/triazole-pyridine chelates. The electronic and steric environments of these complexes were tuned through the incorporation of suitable substituents in the phenyl-pyridine/triazole-pyridine ligands, wherein the position of the phenyl-ring substituent (a CF3 group) also directs the selective adoption of either a trans or a cis configuration between the C(NHC) and the C(phenyl) donor atoms.

View Article and Find Full Text PDF

N-Pyridyl, N'-amido functionalized imidazolium bromides were obtained in high yields as an N-heterocyclic carbene (NHC) precursor and used as bidentate or a pincer ligands to obtain ruthenium complexes via a silver NHC transmetallation route. The incorporation of a phenyl group as an amido-N substituent (R = Ph) results in a bidentate coordination mode through the C(NHC) and N(pyridyl) donors, whereas in its absence (R = H) a pincer coordination mode was observed through the N(pyridyl)^C(NHC)^O(amido) donors. The ruthenium complex featuring a pincer type NCO coordination mode with a protic NH function adjacent to the coordinating O(amido) atom was found to efficiently catalyse the oxidation of activated alcohols effecting quantitative conversions within 30 minutes.

View Article and Find Full Text PDF

A new series of ruthenium(II) carbonyl complexes with benzene-based CCC-pincer bis-(carbene) ligands, [((R)CCC(R))Ru(CO)2(X)](0/+) and [((R)CCC(R))Ru(CO)(NN)](+) ((R)CCC(R) = 2,6-bis-(1-alkylimidazolylidene)benzene, R = Me or (n)Bu; X = I, Br, CH3CN, or 6-(aminomethyl)pyridine (ampy); NN = 2·CH3CN, or chelating ampy or bipyridine), was synthesized and fully characterized. X-Ray structure determinations revealed that these eight complexes have pseudo-octahedral configurations around the ruthenium center with the pincer ligand occupying three meridional sites. These complexes prove to be efficient precatalysts demonstrating very good activity and reusability for the transfer hydrogenation of ketones.

View Article and Find Full Text PDF