Contact tracing, the practice of isolating individuals who have been in contact with infected individuals, is an effective and practical way of containing disease spread. Here we show that this strategy is particularly effective in the presence of social groups: Once the disease enters a group, contact tracing not only cuts direct infection paths but can also pre-emptively quarantine group members such that it will cut indirect spreading routes. We show these results by using a deliberately stylized model that allows us to isolate the effect of contact tracing within the clique structure of the network where the contagion is spreading.
View Article and Find Full Text PDFThe event graph representation of temporal networks suggests that the connectivity of temporal structures can be mapped to a directed percolation problem. However, similarly to percolation theory on static networks, this mapping is valid under the approximation that the structure and interaction dynamics of the temporal network are determined by its local properties, and, otherwise, it is maximally random. We challenge these conditions and demonstrate the robustness of this mapping in case of more complicated systems.
View Article and Find Full Text PDFWe study how the herd immunity threshold and the expected epidemic size depend on homophily with respect to vaccine adoption. We find that the presence of homophily considerably increases the critical vaccine coverage needed for herd immunity and that strong homophily can push the threshold entirely out of reach. The epidemic size monotonically increases as a function of homophily strength for a perfect vaccine, while it is maximized at a nontrivial level of homophily when the vaccine efficacy is limited.
View Article and Find Full Text PDFContact tracing via digital tracking applications installed on mobile phones is an important tool for controlling epidemic spreading. Its effectivity can be quantified by modifying the standard methodology for analyzing percolation and connectivity of contact networks. We apply this framework to networks with varying degree distributions, numbers of application users, and probabilities of quarantine failures.
View Article and Find Full Text PDFIn this study, we investigated cancer cellular networks in the context of gene interactions and their associated patterns in order to recognize the structural features underlying this disease. We aim to propose that the quest of understanding cancer takes us beyond pairwise interactions between genes to a higher-order construction. We characterize the most prominent network deviations in the gene interaction patterns between cancer and normal samples that contribute to the complexity of this disease.
View Article and Find Full Text PDFGenes communicate with each other through different regulatory effects, which lead to the emergence of complex network structures in cells, and such structures are expected to be different for normal and cancerous cells. To study these differences, we have investigated the Gene Regulatory Network (GRN) of cells as inferred from RNA-sequencing data. The GRN is a signed weighted network corresponding to the inductive or inhibitory interactions.
View Article and Find Full Text PDF