Publications by authors named "Abbas Jarrahi"

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration.

View Article and Find Full Text PDF

Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels.

View Article and Find Full Text PDF

Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10-15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening clinical syndrome whose potential to become one of the most grievous challenges of the healthcare system evidenced by the COVID-19 pandemic. Considering the lack of target-specific treatment for ARDS, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve quality of life and outcomes for ARDS patients. ARDS is a systemic inflammatory disease starting with the pulmonary system and involves all other organs in a morbid bidirectional fashion.

View Article and Find Full Text PDF

There is a dire need for due innovative therapeutic modalities to improve outcomes of AD patients. In this study, we tested whether cannabidiol (CBD) improves outcomes in a translational model of familial AD and to investigate if CBD regulates interleukin (IL)-33 and triggering receptor expressed on myeloid cells 2 (TREM2), which are associated with improved cognitive function. CBD was administered to 5xFAD mice, which recapitulate early onset, familial AD.

View Article and Find Full Text PDF

Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes. In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system. By administering intranasal Poly (I:C), a synthetic viral dsRNA, while we were able to mimic the symptoms of ARDS in a murine model, interestingly, there was a significant decrease in the expression of apelin in both blood and lung tissues.

View Article and Find Full Text PDF

Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology.

View Article and Find Full Text PDF

The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction.

View Article and Find Full Text PDF

In the absence of effective antivirals and vaccination, the pandemic of COVID-19 remains the most significant challenge to our health care system in decades. There is an urgent need for definitive therapeutic intervention. Clinical reports indicate that the cytokine storm associated with acute respiratory distress syndrome (ARDS) is the leading cause of mortality in severe cases of some respiratory viral infections, including COVID-19.

View Article and Find Full Text PDF

Objectives: Team-based learning (TBL) represents a new and interesting educational strategy. It helps to enhance students' professional competencies and ideally works to prepare them in their pursuit of lifelong learning. The aim of this study is to evaluate the effectiveness of TBL as an educational strategy on medical students' performance in a problem-based learning (PBL) curriculum.

View Article and Find Full Text PDF