(1) Background: Colon cancer is one of the most common cancer types, and treatment options, unfortunately, do not continually improve the survival rate of patients. With the unprecedented development of nanotechnologies, nanomedicine has become a significant direction in cancer research. Indeed, chemotherapeutics with nanoparticles (NPs) in cancer treatment is an outstanding new treatment principle.
View Article and Find Full Text PDFColorectal cancer is highly prevalent worldwide and has significant morbidity and mortality in humans. High-atomic-number nanoparticles such as iodine can act as X-rays absorbers to increase the local dose. The synthesis and fabrication of oxaliplatin-loaded iodine nanoparticles, their characterization, cell toxicity, radiosensitivity, cell apoptosis, and cell cycle assay in human colorectal cancer (HT-29) cells are investigated.
View Article and Find Full Text PDFThis paper describes the development of mitoxantrone-loaded PEGylated graphene oxide/magnetite nanoparticles (PEG-GO/Fe3O4-MTX), and investigation of its preliminary drug delivery performance. For this, the GO was synthesized through oxidizing graphite powder, and subsequently carboxylated using a substitution nucleophilic reaction. The carboxylated GO (GO-COOH) was then conjugated with amine end-caped PEG chains by Steglich esterification.
View Article and Find Full Text PDF