This study presents an analysis and evaluation of gait asymmetry (GA) based on the temporal gait parameters identified using a portable gait event detection system, placed on the lateral side of the shank of both lower extremities of the participants. Assessment of GA was carried out with seven control subjects (CS), one transfemoral amputee (TFA) and one transtibial amputee (TTA) while walking at different speeds on overground (OG) and treadmill (TM). Gait cycle duration (GCD), stance phase duration (SPD), swing phase duration (SwPD), and the sub-phases of the gait cycle (GC) such as Loading-Response (LR), Foot-Flat (FF), and Push-Off (PO), Swing-1 (SW-1) and Swing-2 (SW-2) were evaluated.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
September 2023
Monitoring the human-exoskeleton interface (HEI) is vital for user safety in assistive exoskeletons. Considering interaction forces during design can improve comfort and efficiency and reduce resistance and inertia. Challenges include covering the lower limb area without interfering with user-robot interaction.
View Article and Find Full Text PDF