Protein adsorption to biomaterial surfaces is considered a determining factor for the host response. Here we detail the protein adsorption profiles of alginate hydrogel microspheres relevant for cell therapy using mass spectrometry (MS)-based proteomics. The investigated microspheres include sulfated alginate (SA), high G alginate (HiG), and poly-l-lysine coated alginate (AP), which previously have been shown to exhibit different inflammatory and fibrotic responses.
View Article and Find Full Text PDFIntra-peritoneal placement of alginate encapsulated human induced pluripotent stem cell-derived hepatocytes (hPSC-Heps) represents a potential new bridging therapy for acute liver failure. One of the rate-limiting steps that needs to be overcome to make such a procedure more efficacious and safer is to reduce the accumulation of fibrotic tissue around the encapsulated cells to allow the free passage of relevant molecules in and out for metabolism. Novel chemical compositions of alginate afford the possibility of achieving this aim.
View Article and Find Full Text PDFCell encapsulation in alginate microbeads is a promising approach to provide immune isolation in cell therapy without immunosuppression. However, the efficacy is hampered by pericapsular fibrotic overgrowth (PFO), causing encapsulated cells to lose function. Stability of the microbeads is important to maintain immune isolation in the long-term.
View Article and Find Full Text PDFStem Cells Transl Med
April 2017
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy.
View Article and Find Full Text PDFThe inflammatory potential of 12 types of alginate-based microspheres was assessed in a human whole blood model. The inflammatory potential could be categorized from low to high based on the four main alginate microsphere types; alginate microbeads, liquefied core poly-l-ornithine (PLO)-containing microcapsules, liquefied core poly-l-lysine (PLL)-containing microcapsules, and solid core PLL-containing microcapsules. No complement or inflammatory cytokine activation was detected for the Ca/Ba alginate microbeads.
View Article and Find Full Text PDF