Publications by authors named "Abazar Rajabi"

The methods utilized to analyze genotype by environment interaction (GEI) and assess the stability and adaptability of genotypes are constantly changing and developing. In this regard, often instead of depending on a single analysis, it is better to use a combination of several methods to measure the nature of the GEI from various dimensions. In this study, the GEI was investigated using different methods.

View Article and Find Full Text PDF

Plant diseases are considered one of the main factors reducing yield and quality of crops, which are constantly developing and creating more virulent races and cause the resistance of more genes to break. Identifying resistance sources and including them in breeding programs will improve resistant genotypes. Rhizomania is the most common, widespread, and devastating disease of sugar beet in Iran and worldwide.

View Article and Find Full Text PDF

Water deficit is the main reason for sugar yield losses in semi-arid areas. Triazole derivatives may mitigate the harmful impacts of water stress. Therefore, this study aimed to assess the effect of tebuconazole (TEB) application on antioxidants, root quality traits, and sugar yield under drought stress conditions.

View Article and Find Full Text PDF

We revisit the relationship between plant water use efficiency and carbon isotope signatures (delta(13)C) of plant material. Based on the definitions of intrinsic, instantaneous and integrated water use efficiency, we discuss the implications for interpreting delta(13)C data from leaf to landscape levels, and across diurnal to decadal timescales. Previous studies have often applied a simplified, linear relationship between delta(13)C, ratios of intercellular to ambient CO(2) mole fraction (C (i)/C (a)), and water use efficiency.

View Article and Find Full Text PDF

In this study, four sugar beet genotypes of differing responses to drought were selected from a field experiment conducted under well-watered and water-limited conditions in 2004. In addition, two candidate genes: 2-cysteine peroxiredoxin (2-cys prx) and Nucleoside Diphosphate Kinase (NDPK), thought to be associated with drought tolerance, were chosen from a previous proteomics study in sugar beet. An expression analysis of the two drought-regulated genes using semi-quantitative reverse transcription Polymerase Chain Reaction (RT-PCR) indicated that there were genotypic differences in the transcript abundance of the candidate genes with the differences in the expression level of 2-cys prx being likely associated with the drought responses of the genotypes in a two-year field study.

View Article and Find Full Text PDF