The NHGRI-EBI GWAS Catalog serves as a vital resource for the genetic research community, providing access to the most comprehensive database of human GWAS results. Currently, it contains close to 7 000 publications for >15 000 traits, from which more than 625 000 lead associations have been curated. Additionally, 85 000 full genome-wide summary statistics datasets-containing association data for all variants in the analysis-are available for downstream analyses such as meta-analysis, fine-mapping, Mendelian randomisation or development of polygenic risk scores.
View Article and Find Full Text PDFThe NHGRI-EBI GWAS Catalog serves as a vital resource for the genetic research community, providing access to the most comprehensive database of human GWAS results. Currently, it contains close to 7,000 publications for more than 15,000 traits, from which more than 625,000 lead associations have been curated. Additionally, 85,000 full genome-wide summary statistics datasets - containing association data for all variants in the analysis - are available for downstream analyses such as meta-analysis, fine-mapping, Mendelian randomisation or development of polygenic risk scores.
View Article and Find Full Text PDFThe eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies.
View Article and Find Full Text PDFMotivation: Post-genome-wide association studies (pGWAS) analysis is designed to decipher the functional consequences of significant single-nucleotide polymorphisms (SNPs) in the era of GWAS. This can be translated into research insights and clinical benefits such as the effectiveness of strategies for disease screening, treatment and prevention. However, the setup of pGWAS (pGWAS) tools can be quite complicated, and it mostly requires big data.
View Article and Find Full Text PDFThe NHGRI-EBI GWAS Catalog (www.ebi.ac.
View Article and Find Full Text PDFBackground: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic will be remembered as one of the defining events of the 21st century. The rapid global outbreak has had significant impacts on human society and is already responsible for millions of deaths. Understanding and tackling the impact of the virus has required a worldwide mobilisation and coordination of scientific research.
View Article and Find Full Text PDFPatient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients' tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions.
View Article and Find Full Text PDFBackground: Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community.
View Article and Find Full Text PDF