Publications by authors named "Abaynesh Yihdego Gebreyohannes"

In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.

View Article and Find Full Text PDF

The introduction of patterns on a membrane-solute interface has been suggested as an effective method to tackle the reduced flux and fouling issues. Herein, the effectiveness of using spray-modified non-solvent induced phase separation (s-NIPS) to create a variety of micrometer-level structured interfaces is now studied. Circular, triangular and rectangular patterns with different dimensions were successfully created on polyacrylonitrile membranes.

View Article and Find Full Text PDF

The need to find alternative bioremediation solutions for organophosphate degradation pushed the research to develop technologies based on organophosphate degrading enzymes, such as phosphotriesterase. The use of free phosphotriesterase poses limits in terms of enzyme reuse, stability, and process development. The heterogenization of enzyme on a support and their use in bioreactors implemented by membranes seems a suitable strategy, thanks to the ability of membranes to compartmentalize, to govern mass transfer, and to provide a microenvironment with tuned physicochemical and structural properties.

View Article and Find Full Text PDF

This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMR). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction.

View Article and Find Full Text PDF