Iron oxide nanoflowers (IONF) are densely packed multi-core aggregates known for their high saturation magnetization and initial susceptibility, as well as low remanence and coercive field. This study reports on how the local magnetic texture originating at the crystalline correlations among the cores determines the special magnetic properties of individual IONF over a wide size range from 40 to 400 nm. Regardless of this significant size variation in the aggregates, all samples exhibit a consistent crystalline correlation that extends well beyond the IONF cores.
View Article and Find Full Text PDFWe have grown high-quality magnetite micrometric islands on ruthenium stripes on sapphire through a combination of magnetron sputtering (Ru film), high-temperature molecular beam epitaxy (oxide islands), and optical lithography. The samples have been characterized by atomic force microscopy, Raman spectroscopy, X-ray absorption and magnetic circular dichroism in a photoemission microscope. The magnetic domains on the magnetite islands can be modified by the application of current pulses through the Ru stripes in combination with magnetic fields.
View Article and Find Full Text PDFWe present a spatially resolved X-ray magnetic linear dichroism study of high quality micron-sized mixed nickel-cobalt oxide (NCO) crystals. NiCoO was prepared in-situ by high-temperature oxygen-assisted molecular beam epitaxy on a Ru(0001) single crystal substrate. To check the effect of incorporating Ni into the cobalt oxide films, three different compositions were prepared.
View Article and Find Full Text PDFThe use of magnetic vector tomography/laminography has opened a 3D experimental window to access the magnetization at the nanoscale. These methods exploit the dependence of the magnetic contrast in transmission to recover its 3D configuration. However, hundreds of different angular projections are required leading to large measurement times.
View Article and Find Full Text PDFVan der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets.
View Article and Find Full Text PDFWe describe a setup that is used for high-frequency electrical sample excitation in a cathode lens electron microscope with the sample stage at high voltage as used in many synchrotron light sources. Electrical signals are transmitted by dedicated high-frequency components to the printed circuit board supporting the sample. Sub-miniature push-on connectors (SMP) are used to realize the connection in the ultra-high vacuum chamber, bypassing the standard feedthrough.
View Article and Find Full Text PDFThe future developments in 3D magnetic nanotechnology require the control of domain wall dynamics by means of current pulses. While this has been extensively studied in 2D magnetic strips (planar nanowires), few reports on this exist in cylindrical geometry, where Bloch point domain walls are expected to have intriguing properties. Here, we report an investigation on cylindrical magnetic Ni nanowires with geometrical notches.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2022
We have monitored the Verwey transition in micrometer-wide, nanometer-thick magnetite islands on epitaxial Ru films on AlO(0001) using Raman spectroscopy. The islands have been grown by high-temperature oxygen-assisted molecular beam epitaxy. Below 100 K and for thicknesses above 20 nm, the Raman spectra correspond to those observed in bulk crystals and high-quality thin films for the sub-Verwey magnetite structure.
View Article and Find Full Text PDFMagnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions.
View Article and Find Full Text PDFIn the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction.
View Article and Find Full Text PDFPatterned elements of permalloy (Py) with a thickness as large as 300 nm have been defined by electron beam lithography on X-ray-transparent 50 nm thick membranes in order to characterize their magnetic structure via Magnetic Transmission X-ray Microscopy (MTXM). To avoid the situation where the fragility of the membranes causes them to break during the lithography process, it has been found that the spin coating of the resist must be applied in two steps. The MTXM results show that our samples have a central domain wall, as well as other types of domain walls, if the nanostructures are wide enough.
View Article and Find Full Text PDFMetal halides are a class of layered materials with promising electronic and magnetic properties persisting down to the two-dimensional limit. While most recent studies focused on the trihalide components of this family, the rather unexplored metal dihalides are also van der Waals layered systems with distinctive magnetic properties. Here we show that the dihalide NiBr grows epitaxially on a Au(111) substrate and exhibits semiconducting and magnetic behavior starting from a single layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
The interest in the research of the structural and electronic properties between graphene and lithium has bloomed since it has been proven that the use of graphene as an anode material in lithium-ion batteries ameliorates their performance and stability. Here, we investigate an alternative route to intercalate lithium underneath epitaxially grown graphene on iridium by means of photon irradiation. We grow thin films of LiCl on top of graphene on Ir(111) and irradiate the system with soft X-ray photons, which leads to a cascade of physicochemical reactions.
View Article and Find Full Text PDFAdvances in cylindrical nanowires for 3D information technologies profit from intrinsic curvature that introduces significant differences with regards to planar systems. A model is proposed to control the stochastic and deterministic coding of remanent 3D complex vortex configurations in designed multilayered (magnetic/non-magnetic) cylindrical nanowires. This concept, introduced by micromagnetic simulations, is experimentally confirmed by magnetic imaging in FeCo/Cu multilayered nanowires.
View Article and Find Full Text PDFThe use of metallic nanowires is mostly reduced to scientific areas where a small quantity of nanostructures are needed. In order to broaden the applicability of these nanomaterials, it is necessary to establish novel synthesis protocols that provide a larger amount of nanowires than the conventional laboratory fabrication processes at a more competitive cost. In this work, we propose several modifications to the conventional electrochemical synthesis of nanowires in order to increase the production with considerably reduced production time and cost.
View Article and Find Full Text PDFImaging techniques are fundamental in order to understand cell organization and machinery in biological research and the related fields. Among these techniques, cryo soft X-ray tomography (SXT) allows imaging whole cryo-preserved cells in the water window X-ray energy range (284-543 eV), in which carbon structures have intrinsically higher absorption than water, allowing the 3D reconstruction of the linear absorption coefficient of the material contained in each voxel. Quantitative structural information at the level of whole cells up to 10 µm thick is then achievable this way, with high throughput and spatial resolution down to 25-30 nm half-pitch.
View Article and Find Full Text PDFMagnetic skyrmions are deemed to be the forerunners of novel spintronic memory and logic devices. While their observation and their current-driven motion at room temperature have been demonstrated, certain issues regarding their nucleation, stability, pinning, and skyrmion Hall effect still need to be overcome to realize functional devices. Here, we demonstrate that focused He-ion-irradiation can be used to create and guide skyrmions in racetracks.
View Article and Find Full Text PDFThe interaction of graphene with metal oxides is essential for understanding and controlling new devices' fabrication based on these materials. The growth of metal oxides on graphene/substrate systems constitutes a challenging task due to the graphene surface's hydrophobic nature. In general, different pre-treatments should be performed before deposition to ensure a homogenous growth depending on the deposition technique, the metal oxide, and the surface's specific nature.
View Article and Find Full Text PDFWe present a spatially resolved X-ray magnetic dichroism study of high-quality, in situ grown nickel oxide films. NiO thin films were deposited on a Ru(0001) substrate by high temperature oxygen-assisted molecular beam epitaxy. We found that by adding a small amount of Fe, the growth mode can be modified in order to promote the formation of micron-sized, triangular islands.
View Article and Find Full Text PDFCoNi/Ni multisegmented cylindrical nanowires were synthesized an electrochemical route. The wires are 140 nm in diameter, with 1000 nm long Ni segments and CoNi segments between 600 and 1400 nm in length. The magnetic configuration was imaged by XMCD-PEEM in the demagnetized state and at remanence after magnetizing axially and perpendicularly.
View Article and Find Full Text PDFNanomagnetism is nowadays expanding into three dimensions, triggered by the discovery of new magnetic phenomena and their potential use in applications. This shift towards 3D structures should be accompanied by strategies and methodologies to map the tridimensional spin textures associated. We present here a combination of dichroic X-ray transmission microscopy at different angles and micromagnetic simulations allowing to determine the magnetic configuration of cylindrical nanowires.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2020
Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified.
View Article and Find Full Text PDF