Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthesized in a straightforward one-step procedure and chemically characterized via spectroscopy and X-ray diffraction crystallography.
View Article and Find Full Text PDFBoron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins.
View Article and Find Full Text PDFThe application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus.
View Article and Find Full Text PDFBackground: Boron is a trace element with increasing importance in drug design. In this sense, boronic acids are emerging as therapeutic agents for several diseases.
Methods: Herein, 3- and 4- acetamidophenylboronic acids and 4-acetamidophenylboronic acid pinacol ester were identified as potential inhibitors of acetylcholinesterase through docking assays on eel, rat, and human acetylcholinesterases indicating binding on the gorge region of the target enzymes.
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist.
View Article and Find Full Text PDFThe potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed.
View Article and Find Full Text PDFLevodopa is a cornerstone in Parkinson's disease treatment. Beneficial effects are mainly by binding on D receptors. Docking simulations of a set of compounds including well-known D-ligands and a pool of Boron-Containing Compounds (BCC), particularly boroxazolidones with a tri/tetra-coordinated boron atom, were performed on the D Dopamine receptor (D2DR).
View Article and Find Full Text PDFBackground: Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects.
Objective: To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease.
Boron-containing compounds (BCCs) are attractive chemical entities in drug development. Some of these compounds have been used in the treatment of human disease, and studies on their pharmacodynamics suggest that they employ multiple forms of activity. However, less is known about the pharmacokinetic profile of these molecules.
View Article and Find Full Text PDF