We demonstrate spontaneous symmetry breaking in the diffraction of a laser-driven grating with memory in its nonlinear response. We observe, experimentally and theoretically, asymmetric diffraction even when the grating and illumination are symmetric. Our analysis reveals how diffracted waves can spontaneously acquire momentum parallel to the lattice vector in quantities unconstrained by the grating period.
View Article and Find Full Text PDFUpconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization.
View Article and Find Full Text PDFThe manipulation of coupled quantum excitations is of fundamental importance in realizing novel photonic and optoelectronic devices. We use electroluminescence to probe plasmon-exciton coupling in hybrid structures consisting of a nanoscale plasmonic tunnel junction and few-layer two-dimensional transition-metal dichalcogenide transferred onto the junction. The resulting hybrid states act as a novel dielectric environment that affects the radiative recombination of hot carriers in the plasmonic nanostructure.
View Article and Find Full Text PDFWe investigate the generation of entanglement between two quantum emitters through the inverse-design engineering of their photonic environment. By means of a topology-optimization approach acting at the level of the electromagnetic Dyadic Green's function, we generate dielectric cloaks operating at different inter-emitter distances and incoherent pumping strengths. We show that the structures obtained maximize the dissipative coupling between the emitters under extremely different Purcell factor conditions, and yield steady-state concurrence values much larger than those attainable in free space.
View Article and Find Full Text PDFLuminescence arising from -decay of radiotracers has garnered much interest recently as a viable in-vivo imaging technique. The emitted Cerenkov radiation can be directly detected by high sensitivity cameras or used to excite highly efficient fluorescent dyes. Here, we investigate the enhancement of visible and infrared emission driven by -decay of radioisotopes in the presence of a hyperbolic nanocavity.
View Article and Find Full Text PDF