Publications by authors named "Ab El-Remessy"

The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors.

View Article and Find Full Text PDF

Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis. Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease (NAFLD), retinopathy, critical limb ischemia, and impaired angiogenesis. Sterile inflammation driven by high-fat diet, increased formation of reactive oxygen species, alteration of intracellular calcium level and associated release of inflammatory mediators, are the main common underlying forces in the pathophysiology of NAFLD, ischemic retinopathy, stroke, and aging brain.

View Article and Find Full Text PDF

Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the "secretome". The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles.

View Article and Find Full Text PDF

Immune system hypersensitivity is believed to contribute to mental frailty in the elderly. Solid evidence indicates NOD-like receptor pyrin domain containing-3 (NLRP3)-inflammasome activation intimately connects aging-associated chronic inflammation (inflammaging) to senile cognitive decline. Thioredoxin interacting protein (TXNIP), an inducible protein involved in oxidative stress, is essential for NLRP3 inflammasome activity.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75 on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75 mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion.

View Article and Find Full Text PDF

We have shown that a high fat diet (HFD) induces the activation of retinal NOD-like receptor protein (NLRP3)-inflammasome that is associated with enhanced expression and interaction with thioredoxin-interacting protein (TXNIP). Here, the specific contribution of TXNIP and the impact of HFD on retinal leukostasis, barrier dysfunction and microvascular degeneration were investigated. Wild-type (WT) and TXNIP knockout (TKO) mice were fed with normal diet or 60% HFD for 8-18 weeks.

View Article and Find Full Text PDF

Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR).

View Article and Find Full Text PDF

Aims/hypothesis: Breakdown of the inner blood-retinal barrier (BRB) is an early event in the pathogenesis of diabetic macular oedema, that eventually leads to vision loss. We have previously shown that diabetes causes an imbalance of nerve growth factor (NGF) isoforms resulting in accumulation of its precursor proNGF and upregulation of the p75 neurotrophin receptor (p75), with consequent increases in the activation of Ras homologue gene family, member A (RhoA). We also showed that genetic deletion of p75 in diabetes preserved the BRB and prevented inflammatory mediators in retinas.

View Article and Find Full Text PDF

Ischemic retinopathy is characterized by ischemia followed by retinal neovascularization (RNV) resulting in visual impairment. Given the role of neuron-secreted growth factors in regulating angiogenesis, we examined how genetic deletion of the neurotrophin receptor; p75 can overcome retinal ischemia using oxygen-induced retinopathy (OIR) mouse model. Wildtype (WT) or p75 mice pups were subjected to hyperoxia (70% O, p7-p12) then returned to normal air (relative hypoxia, p12-p17).

View Article and Find Full Text PDF

Diabetes and hyperglycemia are associated with increased retinal oxidative and nitrative stress and vascular cell death. Paradoxically, high glucose stimulates expression of survival and angiogenic growth factors. Therefore, we examined the hypothesis that high glucose-mediated tyrosine nitration causes inhibition of the survival protein PI3-kinase, and in particular, its regulatory p85 subunit in retinal endothelial cell (EC) cultures.

View Article and Find Full Text PDF

Endemic prevalence of obesity is associated with alarming increases in non-alcoholic steatohepatitis (NASH) with limited available therapeutics. Toll-like receptor2 (TLR2) and Nod-like receptor protein 3 (NLRP3) Inflammasome are implicated in hepatic steatosis, inflammation and fibrosis; the histological landmark stages of NASH. TXNIP, a member of α-arrestin family activates NLRP3 in response to various danger stimuli.

View Article and Find Full Text PDF

Impaired maturation of nerve growth factor precursor (proNGF) and its accumulation has been reported in several neurodegenerative diseases, myocardial infarction and diabetes. To elucidate the direct impact of proNGF accumulation identified the need to create a transgenic model that can express fully mutated cleavage-resistant proNGF. Using Cre-Lox technology, we developed an inducible endothelial-specific proNGF transgenic mouse (proNGF) that overexpresses GFP-conjugated cleavage-resistant proNGF123 when crossed with VE-cadherin-CreERT2 (Cre).

View Article and Find Full Text PDF

Introduction: The p75 neurotrophin receptor (p75) is a member of TNF-α receptor superfamily that bind all neurotrophins, mainly regulating their pro-apoptotic actions. Ischemia is a common pathology in different cardiovascular diseases affecting multiple organs, however the contribution of p75 remains not fully addressed. The aim of this work is to review the current evidence through published literature studying the impact of p75 receptor in ischemic vascular diseases.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the most feared ocular manifestation of diabetes. DR is characterized by progressive retinal damage that may eventually result in blindness. Clinically, this blindness is caused by progressive damage to the retinal microvasculature, which leads to ischemia, retinal swelling, and neovascularization.

View Article and Find Full Text PDF

Background: Previous work demonstrated that high-fat diet (HFD) triggered thioredoxin-interacting protein (TXNIP) and that silencing TXNIP prevents diabetes-impaired vascular recovery. Here, we examine the impact of genetic deletion of TXNIP on HFD-impaired vascular recovery using hind limb ischemia model.

Methods: Wild type mice (WT, C57Bl/6) and TXNIP knockout mice (TKO) were fed either normal chow diet (WT-ND and TKO-ND) or 60% high-fat diet (WT-HFD and TKO-HFD).

View Article and Find Full Text PDF

Aim: To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation.

Methods: Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid (PBA); endoplasmic reticulum-stress inhibitor; for 2 wk.

View Article and Find Full Text PDF

Diabetic retinopathy is characterized by early stage of retinal neuro-inflammation that triggers development of acellular capillaries and a late stage of pathological neovascularization. Due to limited treatment options, there is a pressing need to develop new therapeutics. Our group discovered that diabetes-impaired processing of the nerve growth factor precursor (proNGF) resulting in its accumulation and its receptor p75.

View Article and Find Full Text PDF

Unlabelled: Ischemia/reperfusion and the resulting oxidative/nitrative stress impair cerebral myogenic tone via actin depolymerization. While it is known that NADPH oxidase (Nox) family is a major source of vascular oxidative stress; the extent and mechanisms by which Nox activation contributes to actin depolymerization, and equally important, the relative role of Nox isoforms in this response is not clear.

Aim: To determine the role of Nox4 in hypoxia-mediated actin depolymerization and myogenic-tone impairment in cerebral vascular smooth muscle.

View Article and Find Full Text PDF

Diabetic retinopathy is the leading cause of blindness in working age in US and worldwide. Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) are known to be essential for growth, differentiation and survival of neurons in the developing and mature retina. Nevertheless, a growing body of evidence supports an emerging role of neurotrophins in retinal diseases and in particular, diabetic retinopathy.

View Article and Find Full Text PDF

As our knowledge expands, it is now clear that the renin-angiotensin (Ang) system (RAS) mediates functions other than regulating blood pressure (BP). The RAS plays a central role in the pathophysiology of different neurovascular unit disorders including stroke and retinopathy. Moreover, the beneficial actions of RAS modulation in brain and retina have been documented in experimental research, but not yet exploited clinically.

View Article and Find Full Text PDF

Accumulation of the nerve growth factor precursor (proNGF) and its receptor p75(NTR) have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75(NTR) induce endothelial cell (EC) death and development of acellular capillaries, a surrogate marker of retinal ischemia.

View Article and Find Full Text PDF