ICMI22 Companion (2022)
November 2022
Advances in computational behavior analysis have the potential to increase our understanding of behavioral patterns and developmental trajectories in neurotypical individuals, as well as in individuals with mental health conditions marked by motor, social, and emotional difficulties. This study focuses on investigating how head movement patterns during face-to-face conversations vary with age from childhood through adulthood. We rely on computer vision techniques due to their suitability for analysis of social behaviors in naturalistic settings, since video data capture can be unobtrusively embedded within conversations between two social partners.
View Article and Find Full Text PDF