Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCrO is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCrO, however, reveal significant energetic limitations.
View Article and Find Full Text PDFExisting in operando methods for detection of plated lithium can only detect the presence of plating after the charge is complete and irreversible damage has already occurred. In this work, the characteristic potential minimum on the graphite electrode during high rate lithiation is proposed and assessed as an in operando technique for detecting the onset of lithium plating. While other studies have shown that rapid self-heating of a cell can cause this type of "voltage overshoot", we confirm through temperature-controlled coin cell experiments that such a voltage profile can also be caused by the occurrence of severe lithium plating.
View Article and Find Full Text PDFThe charge/discharge capabilities of Li-ion cathodes are influenced by the meso-scale geometry, transport properties, and morphological parameters of the constituent phases in the cathode: active material, binder, conductive additive, and pore. Electrode processing influences the structure and attendant properties of these constituents. Thus, performance of the battery can be enhanced by correlating various electrode processing techniques with the charge/discharge behavior in the lithium-ion cathodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Next-generation Li-ion battery technology awaits materials that not only store more electrochemical energy at finite rates but also exhibit superior control over side reactions and better thermal stability. Herein, we hypothesize that designing an appropriate particle morphology can provide a well-balanced set of physicochemical interactions. Given the anode-centric nature of primary degradation modes, we investigate three different carbon particles-commercial graphite, spherical carbon, and spiky carbon-and analyze the correlation between particle geometry and functionality.
View Article and Find Full Text PDFIn porous intercalation electrodes, coupled charge and species transport interactions take place at the pore-scale, while often observations are made at the electrode-scale. The physical manifestation of these interactions from pore- to electrode-scale is poorly understood. Moreover, the spatial arrangement of the constituent material phases forming a porous electrode significantly affects the multi-modal electrochemical and transport interplay.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Thermo-electrochemical extremes continue to remain a challenge for lithium-ion batteries. Contrary to the conventional approach, we propose herein that the electrochemistry-coupled and microstructure-mediated cross talk between the positive and negative electrodes ultimately dictates the off-equilibrium-coupled processes, such as heat generation and the propensity for lithium plating. The active particle morphological differences between the electrode couple foster a thermo-electrochemical hysteresis, where the difference in heat generation rates changes the electrochemical response.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g.
View Article and Find Full Text PDF