Endocytosis of the μ-type opioid receptor (MOR) is a fundamentally important cellular regulatory process that is characteristically driven less effectively by partial relative to full agonist ligands. Such agonist-selective endocytic discrimination depends on how strongly drugs promote MOR binding to β-arrestins and this, in turn, depends on how strongly they stimulate phosphorylation of the MOR cytoplasmic tail by GPCR kinases (GRKs) from the GRK2/3 subfamily. While these relatively 'downstream' steps in the agonist-selective endocytic pathway are now well defined, it remains unclear how agonist-bound receptors are distinguished 'upstream' by GRKs.
View Article and Find Full Text PDFHow the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs). In humans, around 400 ORs enable the sense of smell.
View Article and Find Full Text PDFThe μ-opioid receptor (μOR), a prototypical G protein-coupled receptor (GPCR), is the target of opioid analgesics such as morphine and fentanyl. Due to the severe side effects of current opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, represent alternative therapeutics with clear advantages such as affinity and target selectivity.
View Article and Find Full Text PDFThree proton-sensing G protein-coupled receptors (GPCRs), GPR4, GPR65, and GPR68, respond to changes in extracellular pH to regulate diverse physiology and are implicated in a wide range of diseases. A central challenge in determining how protons activate these receptors is identifying the set of residues that bind protons. Here, we determine structures of each receptor to understand the spatial arrangement of putative proton sensing residues in the active state.
View Article and Find Full Text PDFThe orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric G.
View Article and Find Full Text PDFThe μ-opioid receptor (μOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity.
View Article and Find Full Text PDFA central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell.
View Article and Find Full Text PDFIn vitro biopanning platforms using synthetic phage display antibody libraries have enabled the identification of antibodies against antigens that were once thought to be beyond the scope of immunization. Applying these methods against challenging targets remains a critical challenge. Here, we present a new biopanning pipeline, RAPID (Rare Antibody Phage Isolation and Discrimination), for the identification of rare high-affinity antibodies against challenging targets.
View Article and Find Full Text PDFThe orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling. GPR161 mutations lead to developmental defects and cancers. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear.
View Article and Find Full Text PDFThe serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation.
View Article and Find Full Text PDFOur sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome. How odorants are recognized by odorant receptors remains unclear.
View Article and Find Full Text PDFβ-Arrestins are master regulators of cellular signaling that operate by desensitizing ligand-activated G-protein-coupled receptors (GPCRs) at the plasma membrane and promoting their subsequent endocytosis. The endocytic activity of β-arrestins is ligand dependent, triggered by GPCR binding, and increasingly recognized to have a multitude of downstream signaling and trafficking consequences that are specifically programmed by the bound GPCR. However, only one biochemical 'mode' for GPCR-mediated triggering of the endocytic activity is presently known - displacement of the β-arrestin C-terminus (CT) to expose clathrin-coated pit-binding determinants that are masked in the inactive state.
View Article and Find Full Text PDFThyroid hormones are vital in metabolism, growth and development. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR). In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity.
View Article and Find Full Text PDFSingle particle cryogenic-electron microscopy (cryo-EM) is used extensively to determine structures of activated G protein-coupled receptors (GPCRs) in complex with G proteins or arrestins. However, applying it to GPCRs without signaling proteins remains challenging because most receptors lack structural features in their soluble domains to facilitate image alignment. In GPCR crystallography, inserting a fusion protein between transmembrane helices 5 and 6 is a highly successful strategy for crystallization.
View Article and Find Full Text PDFThe neuropeptide substance P (SP) is important in pain and inflammation. SP activates the neurokinin-1 receptor (NK1R) to signal via G and G proteins. Neurokinin A also activates NK1R, but leads to selective G signaling.
View Article and Find Full Text PDFThe Hedgehog signaling pathway coordinates early development and is important in various cancers. Classic approaches to test pathway activation rely on transcriptional readouts or ciliary accumulation of specific pathway components. Although these assays have laid the foundation for studying Hedgehog pathway activation, they integrate the complex molecular actions of the transporter Patched and the seven transmembrane protein Smoothened.
View Article and Find Full Text PDFBackground: Limited systematic surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the early months of the US epidemic curtailed accurate appraisal of transmission intensity. Our objective was to perform case detection of an entire rural community to quantify SARS-CoV-2 transmission using polymerase chain reaction (PCR) and antibody testing.
Methods: We conducted a cross-sectional survey of SARS-CoV-2 infection in the rural town of Bolinas, California (population 1620), 4 weeks after shelter-in-place orders.
The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding.
View Article and Find Full Text PDFThe SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding.
View Article and Find Full Text PDFInfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus.
View Article and Find Full Text PDFThe ability to design functional sequences and predict effects of variation is central to protein engineering and biotherapeutics. State-of-art computational methods rely on models that leverage evolutionary information but are inadequate for important applications where multiple sequence alignments are not robust. Such applications include the prediction of variant effects of indels, disordered proteins, and the design of proteins such as antibodies due to the highly variable complementarity determining regions.
View Article and Find Full Text PDFThe Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism.
View Article and Find Full Text PDFAlternative strategies are needed for patients with B-cell malignancy relapsing after CD19-targeted immunotherapy. Here, cell surface proteomics revealed CD72 as an optimal target for poor-prognosis /-rearranged (MLLr) B-cell acute lymphoblastic leukemia (B-ALL), which we further found to be expressed in other B-cell malignancies. Using a recently described, fully system, we selected synthetic CD72-specific nanobodies, incorporated them into chimeric antigen receptors (CAR), and demonstrated robust activity against B-cell malignancy models, including CD19 loss.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2.
View Article and Find Full Text PDFActivation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1).
View Article and Find Full Text PDF