Publications by authors named "Aashish Clerk"

Article Synopsis
  • Electronic defects in semiconductors are crucial for the development of quantum technologies, but accessing these defects at a single-particle level is challenging.
  • A new method has been developed to investigate optically inactive spin defects, allowing researchers to observe semiconductor behavior at the atomic scale.
  • By analyzing spin populations of single nitrogen spin defects in diamond using a nearby nitrogen vacancy center, the researchers measured defect ionization, enhancing understanding beyond traditional quantum sensing methods.
View Article and Find Full Text PDF

We study the interplay between measurement-induced dynamics and conditional unitary evolution in quantum systems. We numerically and analytically investigate commuting random measurement and feed forward (MFF) processes and find a sharp transition in their ability to generate entanglement negativity as the number of MFF channels varies. We also establish a direct connection between these findings and transitions induced by random dephasing from an environment with broken time-reversal symmetry.

View Article and Find Full Text PDF

We propose a new approach to simulate the decoherence of a central spin coupled to an interacting dissipative spin bath with cluster-correlation expansion techniques. We benchmark the approach on generic 1D and 2D spin baths and find excellent agreement with numerically exact simulations. Our calculations show a complex interplay between dissipation and coherent spin exchange, leading to increased central spin coherence in the presence of fast dissipation.

View Article and Find Full Text PDF

The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems, is necessarily bidirectional, i.e.

View Article and Find Full Text PDF

Superconducting quantum circuits are a natural platform for quantum simulations of a wide variety of important lattice models describing topological phenomena, spanning condensed matter and high-energy physics. One such model is the bosonic analog of the well-known fermionic Kitaev chain, a 1D tight-binding model with both nearest-neighbor hopping and pairing terms. Despite being fully Hermitian, the bosonic Kitaev chain exhibits a number of striking features associated with non-Hermitian systems, including chiral transport and a dramatic sensitivity to boundary conditions known as the non-Hermitian skin effect.

View Article and Find Full Text PDF

Noise is an ever-present challenge to the creation and preservation of fragile quantum states. Recent work suggests that spatial noise correlations can be harnessed as a resource for noise mitigation via the use of spectator qubits to measure environmental noise. In this work we generalize this concept from spectator qubits to a spectator mode: a photonic mode which continuously measures spatially correlated classical dephasing noise and applies a continuous correction drive to frequency-tunable data qubits.

View Article and Find Full Text PDF

As the field of optomechanics advances, quadratic dispersive coupling (QDC) represents an increasingly feasible path toward qualitatively new functionality. However, the leading QDC geometries generate linear dissipative coupling and an associated quantum radiation force noise that is detrimental to QDC applications. Here, we propose a simple geometry that dramatically reduces this noise without altering the QDC strength.

View Article and Find Full Text PDF

Understanding whether dissipation in an open quantum system is truly quantum is a question of both fundamental and practical interest. We consider n qubits subject to correlated Markovian dephasing and present a sufficient condition for when bath-induced dissipation can generate system entanglement and hence must be considered quantum. Surprisingly, we find that the presence or absence of time-reversal symmetry plays a crucial role: broken time-reversal symmetry is required for dissipative entanglement generation.

View Article and Find Full Text PDF

Quantum sensing protocols that exploit the dephasing of a probe qubit are powerful and ubiquitous methods for interrogating an unknown environment. They have a variety of applications, ranging from noise mitigation in quantum processors, to the study of correlated electron states. Here, we discuss a simple strategy for enhancing these methods, based on the fact that they often give rise to an inadvertent quench of the probed system: there is an effective sudden change in the environmental Hamiltonian at the start of the sensing protocol.

View Article and Find Full Text PDF

We show that in a one-dimensional translationally invariant tight binding chain, nondispersing wave packets can in general be realized as Floquet eigenstates-or linear combinations thereof-using a spatially inhomogeneous drive, which can be as simple as modulation on a single site. The recurrence time of these wave packets (their "round-trip" time) locks in at rational ratios sT/r of the driving period T, where s, r are coprime integers. Wave packets of different s/r can coexist under the same drive, yet travel at different speeds.

View Article and Find Full Text PDF

Non-Hermitian systems exhibit markedly different phenomena than their conventional Hermitian counterparts. Several such features, such as the non-Hermitian skin effect, are only present in spatially extended systems. Potential applications of these effects in many-mode systems however remains largely unexplored.

View Article and Find Full Text PDF

Optomechanical couplings involve both beam splitter and two-mode-squeezing types of interactions. While the former underlies the utility of many applications, the latter creates unwanted excitations and is usually detrimental. In this Letter, we propose a simple but powerful method based on cavity parametric driving to suppress the unwanted excitation that does not require working with a deeply sideband-resolved cavity.

View Article and Find Full Text PDF

Transport measurements have been an indispensable tool in studying conducting states of matter. However, there exists a large set of interesting states that are insulating, often due to electronic interactions or topology, and are difficult to probe via transport. Here, through an experiment on carbon nanotubes, we present a new approach capable of measuring insulating electronic states through their back action on nanomechanical motion.

View Article and Find Full Text PDF

Unconventional properties of non-Hermitian systems, such as the existence of exceptional points, have recently been suggested as a resource for sensing. The impact of noise and utility in quantum regimes however remains unclear. In this work, we analyze the parametric-sensing properties of linear coupled-mode systems that are described by effective non-Hermitian Hamiltonians.

View Article and Find Full Text PDF

We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points.

View Article and Find Full Text PDF

We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer.

View Article and Find Full Text PDF

The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources.

View Article and Find Full Text PDF

There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states.

View Article and Find Full Text PDF

We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem).

View Article and Find Full Text PDF

We consider how nonlinear interaction effects can manifest themselves and even be enhanced in a strongly driven optomechanical system. Using a Keldysh Green's function approach, we calculate modifications to the cavity density of states due to both linear and nonlinear optomechanical interactions, showing that strong modifications can arise even for a weak nonlinear interaction. We show how this quantity can be directly probed in an optomechanically induced transparency-type experiment.

View Article and Find Full Text PDF

We show how strong steady-state entanglement can be achieved in a three-mode optomechanical system (or other parametrically coupled bosonic system) by effectively laser cooling a delocalized Bogoliubov mode. This approach allows one to surpass the bound on the maximum stationary intracavity entanglement possible with a coherent two-mode squeezing interaction. In particular, we find that optimizing the relative ratio of optomechanical couplings, rather than simply increasing their magnitudes, is essential for achieving strong entanglement.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores using a mechanical resonator to transfer quantum states between two types of electromagnetic cavities, like optical and microwave cavities.
  • An effective mechanically dark mode is identified that remains unaffected by mechanical dissipation, which boosts the efficiency of state transfer between cavities.
  • The authors present straightforward mathematical formulas to calculate the fidelity of transferring both Gaussian and non-Gaussian quantum states.
View Article and Find Full Text PDF

We present a new charge sensing technique for the excited-state spectroscopy of individual quantum dots, which requires no patterned electrodes. An oscillating atomic force microscope cantilever is used as a movable charge sensor as well as gate to measure the single-electron tunneling between an individual self-assembled InAs quantum dot and back electrode. A set of cantilever dissipation versus bias voltage curves measured at different cantilever oscillation amplitudes forms a diagram analogous to the Coulomb diamond usually measured with transport measurements.

View Article and Find Full Text PDF

We present theoretical results for the backaction force noise and damping of a mechanical oscillator whose position is measured by a mesoscopic conductor. Our scattering approach is applicable to a wide class of systems; in particular, it may be used to describe point contact position detectors far from the weak tunneling limit. We find that the backaction depends not only on the mechanical modulation of transmission probabilities, but also on the modulation of scattering phases, even in the absence of a magnetic field.

View Article and Find Full Text PDF