Publications by authors named "Aashiq H Mirza"

mA has different stoichiometry at different positions in different mRNAs. However, the exact stoichiometry of mA is difficult to measure. Here, we describe SCARPET (site-specific cleavage and radioactive-labeling followed by purification, exonuclease digestion, and thin-layer chromatography), a simple and streamlined biochemical assay for quantifying mA at any specific site in any mRNA.

View Article and Find Full Text PDF

Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components.

View Article and Find Full Text PDF

In recent years, the treatment of breast cancer has advanced dramatically and neoadjuvant chemotherapy (NAC) has become a common treatment method, especially for locally advanced breast cancer. However, other than the subtype of breast cancer, no clear factor indicating sensitivity to NAC has been identified. In this study, we attempted to use artificial intelligence (AI) to predict the effect of preoperative chemotherapy from hematoxylin and eosin images of pathological tissue obtained from needle biopsies prior to chemotherapy.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have recently been implicated in impaired β-cell function in diabetes. Using microarray-based profiling of circRNAs in human EndoC-βH1 cells treated with pro-inflammatory cytokines, this study aimed to investigate the expression and possible regulatory roles of circRNAs in human β cells. We identified ~5000 β-cell-expressed circRNAs, of which 84 were differentially expressed (DE) after cytokine exposure.

View Article and Find Full Text PDF

Chemical modifications of mRNA, the so-called epitranscriptome, represent an additional layer of post-transcriptional regulation of gene expression. The most common epitranscriptomic modification, N6-methyladenosine (m6A), is generated by a multi-subunit methyltransferase complex. We show that alphaherpesvirus kinases trigger phosphorylation of several components of the m6A methyltransferase complex, including METTL3, METTL14, and WTAP, which correlates with inhibition of the complex and a near complete loss of m6A levels in mRNA of virus-infected cells.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is a highly prevalent mRNA modification that promotes degradation of transcripts encoding proteins that have roles in cell development, differentiation, and other pathways. METTL3 is the major methyltransferase that catalyzes the formation of m6A in mRNA. As 30% to 80% of m6A can remain in mRNA after METTL3 depletion by CRISPR/Cas9-based methods, other enzymes are thought to catalyze a sizable fraction of m6A.

View Article and Find Full Text PDF

RNA modifications are important regulators of gene expression. In Trypanosoma brucei, transcription is polycistronic and thus most regulation happens post-transcriptionally. N-methyladenosine (mA) has been detected in this parasite, but its function remains unknown.

View Article and Find Full Text PDF

Accelerated evolution of any portion of the genome is of significant interest, potentially signaling positive selection of phenotypic traits and adaptation. Accelerated evolution remains understudied for structured RNAs, despite the fact that an RNA's structure is often key to its function. RNA structures are typically characterized by compensatory (structure-preserving) basepair changes that are unexpected given the underlying sequence variation, i.

View Article and Find Full Text PDF

Non-muscle invasive bladder cancer (NMIBC) generally has a good prognosis; however, recurrence after transurethral resection (TUR), the standard primary treatment, is a major problem. Clinical management after TUR has been based on risk classification using clinicopathological factors, but these classifications are not complete. In this study, we attempted to predict early recurrence of NMIBC based on machine learning of quantitative morphological features.

View Article and Find Full Text PDF

Type 1 diabetes is an immune-driven disease, where the insulin-producing beta cells from the pancreatic islets of Langerhans becomes target of immune-mediated destruction. Several studies have highlighted the implication of circulating and exosomal microRNAs (miRNAs) in type 1 diabetes, underlining its biomarker value and novel therapeutic potential. Recently, we discovered that exosome-enriched extracellular vesicles carry altered levels of both known and novel miRNAs in breast milk from lactating mothers with type 1 diabetes.

View Article and Find Full Text PDF

Males and females exhibit striking differences in the prevalence of metabolic traits including hepatic steatosis, a key driver of cardiometabolic morbidity and mortality. RNA methylation is a widespread regulatory mechanism of transcript turnover. Here, we show that presence of the RNA modification N-methyladenosine (mA) triages lipogenic transcripts for degradation and guards against hepatic triglyceride accumulation.

View Article and Find Full Text PDF

Type 1 and 2 diabetes (T1/2D) are complex metabolic diseases caused by absolute or relative loss of functional β-cell mass, respectively. Both diseases are influenced by multiple genetic loci that alter disease risk. For many of the disease-associated loci, the causal candidate genes remain to be identified.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a representative primary liver cancer caused by long-term and repetitive liver injury. Surgical resection is generally selected as the radical cure treatment. Because the early recurrence of HCC after resection is associated with low overall survival, the prediction of recurrence after resection is clinically important.

View Article and Find Full Text PDF

The type 1 diabetes (T1D) risk locus on chromosome 15q25.1 harbors the candidate gene CTSH (cathepsin H). We previously demonstrated that CTSH regulates β-cell function in vitro and in vivo.

View Article and Find Full Text PDF

The analysis of CpG methylation in circulating tumor DNA fragments has emerged as a promising approach for the noninvasive early detection of solid tumors, including colorectal cancer (CRC). The most commonly employed assay involves bisulfite conversion of circulating tumor DNA, followed by targeted PCR, then real-time quantitative PCR (alias methylation-specific PCR). This report demonstrates the ability of a multiplex bisulfite PCR-ligase detection reaction-real-time quantitative PCR assay to detect seven methylated CpG markers (CRC or colon specific), in both simulated (approximately 30 copies of fragmented CRC cell line DNA mixed with approximately 3000 copies of fragmented peripheral blood DNA) and CRC patient-derived cell-free DNAs.

View Article and Find Full Text PDF

Background: Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR.

Methods: In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2).

View Article and Find Full Text PDF

Detection of low-abundance mutations in cell-free DNA is being used to identify early cancer and early cancer recurrence. Here, we report a new PCR-LDR-qPCR assay capable of detecting point mutations at a single-molecule resolution in the presence of an excess of wild-type DNA. Major features of the assay include selective amplification and detection of mutant DNA employing multiple nested primer-binding regions as well as wild-type sequence blocking oligonucleotides, prevention of carryover contamination, spatial sample dilution, and detection of multiple mutations in the same position.

View Article and Find Full Text PDF

The breast milk plays a crucial role in shaping the initial intestinal microbiota and mucosal immunity of the infant. Interestingly, breastfeeding has proven to be protective against the early onset of immune-mediated diseases including type 1 diabetes. Studies have shown that exosomes from human breast milk are enriched in immune-modulating miRNAs suggesting that exosomal miRNAs (exomiRs) transferred to the infant could play a critical role in the development of the infant's immune system.

View Article and Find Full Text PDF

Interactions between RNAs and proteins play essential roles in many important biological processes. Benefitting from the advances of next generation sequencing technologies, hundreds of RNA-binding proteins (RBP) and their associated RNAs have been revealed, which enables the large-scale prediction of RNA-protein interactions using machine learning methods. Till now, a wide range of computational tools and pipelines have been developed, including deep learning models, which have achieved remarkable performance on the identification of RNA-protein binding affinities and sites.

View Article and Find Full Text PDF

Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell-cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells.

View Article and Find Full Text PDF

Understanding distinct cell-type specific gene expression in human pancreatic islets is important for developing islet regeneration strategies and therapies to improve β-cell function in type 1 diabetes (T1D). While numerous transcriptome-wide studies on human islet cell-types have focused on protein-coding genes, the non-coding repertoire, such as long non-coding RNA, including circular RNAs, remains mostly unexplored. Here, we explored transcriptional landscape of human α-, β-, and exocrine cells from published total RNA sequencing (RNA-seq) datasets to identify circular RNAs (circRNAs).

View Article and Find Full Text PDF

Circulating microRNAs (miRNAs) have been implicated in several pathologies including type 1 diabetes. In the present study, we aimed to identify circulating miRNAs affected by disease duration in children with recent onset type 1 diabetes. Forty children and adolescents from the Danish Remission Phase Cohort were followed with blood samples drawn at 1, 3, 6, 12, and 60 months after diagnosis.

View Article and Find Full Text PDF