n-type field effect transistors (FETs) based on two-dimensional (2D) transition-metal dichalcogenides (TMDs) such as MoS and WS have come close to meeting the requirements set forth in the International Roadmap for Devices and Systems (IRDS). However, p-type 2D FETs are dramatically lagging behind in meeting performance standards. Here, we adopt a three-pronged approach that includes contact engineering, channel length () scaling, and monolayer doping to achieve high performance p-type FETs based on synthetic WSe.
View Article and Find Full Text PDFEpitaxial growth of two-dimensional transition metal dichalcogenides on sapphire has emerged as a promising route to wafer-scale single-crystal films. Steps on the sapphire act as sites for transition metal dichalcogenide nucleation and can impart a preferred domain orientation, resulting in a substantial reduction in mirror twins. Here we demonstrate control of both the nucleation site and unidirectional growth direction of WSe on c-plane sapphire by metal-organic chemical vapour deposition.
View Article and Find Full Text PDFThe rapid proliferation of security compromised hardware in today's integrated circuit (IC) supply chain poses a global threat to the reliability of communication, computing, and control systems. While there have been significant advancements in detection and avoidance of security breaches, current top-down approaches are mostly inadequate, inefficient, often inconclusive, and resource extensive in time, energy, and cost, offering tremendous scope for innovation in this field. Here, we introduce an energy and area efficient non-von Neumann hardware platform providing comprehensive and bottom-up security solutions by exploiting inherent device-to-device variation, electrical programmability, and persistent photoconductivity demonstrated by atomically thin two-dimensional memtransistors.
View Article and Find Full Text PDFSpiking neural networks (SNNs) promise to bridge the gap between artificial neural networks (ANNs) and biological neural networks (BNNs) by exploiting biologically plausible neurons that offer faster inference, lower energy expenditure, and event-driven information processing capabilities. However, implementation of SNNs in future neuromorphic hardware requires hardware encoders analogous to the sensory neurons, which convert external/internal stimulus into spike trains based on specific neural algorithm along with inherent stochasticity. Unfortunately, conventional solid-state transducers are inadequate for this purpose necessitating the development of neural encoders to serve the growing need of neuromorphic computing.
View Article and Find Full Text PDFMemristive crossbar architectures are evolving as powerful in-memory computing engines for artificial neural networks. However, the limited number of non-volatile conductance states offered by state-of-the-art memristors is a concern for their hardware implementation since trained weights must be rounded to the nearest conductance states, introducing error which can significantly limit inference accuracy. Moreover, the incapability of precise weight updates can lead to convergence problems and slowdown of on-chip training.
View Article and Find Full Text PDFIntegration of low-power consumer electronics on glass can revolutionize the automotive and transport sectors, packaging industry, smart building and interior design, healthcare, life science engineering, display technologies, and many other applications. However, direct growth of high-performance, scalable, and reliable electronic materials on glass is difficult owing to low thermal budget. Similarly, development of energy-efficient electronic and optoelectronic devices on glass requires manufacturing innovations.
View Article and Find Full Text PDFIn this article, we adopt a radical approach for next generation ultra-low-power sensor design by embracing the evolutionary success of animals with extraordinary sensory information processing capabilities that allow them to survive in extreme and resource constrained environments. Stochastic resonance (SR) is one of those astounding phenomena, where noise, which is considered detrimental for electronic circuits and communication systems, plays a constructive role in the detection of weak signals. Here, we show SR in a photodetector based on monolayer MoS for detecting ultra-low-intensity subthreshold optical signals from a distant light emitting diode (LED).
View Article and Find Full Text PDF