Publications by authors named "Aartsma-Rus A"

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models.

View Article and Find Full Text PDF

Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype.

View Article and Find Full Text PDF

Background: Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications.

View Article and Find Full Text PDF

Antisense oligonucleotides (AONs) can be used to correct the disrupted reading frame of Duchenne muscular dystophy patients (DMD). We have a collection of 121 AONs, of which 79 are effective in inducing the specific skipping of 38 out of the 79 different DMD exons. All AONs are located within exons and were hypothesized to act by steric hindrance of serine-arginine rich (SR) protein binding to exonic splicing enhancer (ESE) sites.

View Article and Find Full Text PDF

The detection of duplications in Duchenne (DMD)/Becker Muscular Dystrophy (BMD) has long been a neglected issue. However, recent technological advancements have significantly simplified screening for such rearrangements. We report here the detection and analysis of 118 duplications in the DMD gene of DMD/BMD patients.

View Article and Find Full Text PDF

The severe Duchenne and milder Becker muscular dystrophy are both caused by mutations in the DMD gene. This gene codes for dystrophin, a protein important for maintaining the stability of muscle-fiber membranes. In 1988, Monaco and colleagues postulated an explanation for the phenotypic difference between Duchenne and Becker patients in the reading-frame rule: In Duchenne patients, mutations induce a shift in the reading frame leading to prematurely truncated, dysfunctional dystrophins.

View Article and Find Full Text PDF

Through antisense-induced single-, double-, and multiexon skipping, we have previously demonstrated restoration of dystrophin expression in Duchenne muscular dystrophy (DMD) patient-derived muscle cells in vitro. In this study we further explored the frontiers of this strategy by using specific combinations of 2'-O-methyl phosphorothioate antisense oligonucleotides (AONs) targeting either one or multiple exons. We show that skipping efficiencies may indeed be improved by targeting two putative splicing regulatory sequences within one exon.

View Article and Find Full Text PDF

Objectives: The objective of this study was to assess the utility of the gene expression profiling technique for the preclinical evaluation of drug efficacy and safety, taking a new therapeutic approach for Duchenne muscular dystrophy (DMD) as an example.

Methods: Muscles from dystrophin-deficient (mdx) mice, a well-characterized animal model for DMD, were injected with antisense constructs that restore the open reading frame in the Dmd gene. Synthetic antisense oligonucleotides (AONs) complexed with different carriers to enhance cellular uptake and recombinant adeno-associated virus (rAAV)-expressed antisense sequences were evaluated.

View Article and Find Full Text PDF

As small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional dystrophin proteins and potential conversion of severe DMD into milder Becker muscular dystrophy (BMD) phenotypes. We have previously described 37 exon-internal AONs that induce skipping of 14 DMD exons in human control myotube cultures.

View Article and Find Full Text PDF

The therapeutic potential of frame-restoring exon skipping by antisense oligonucleotides (AONs) has recently been demonstrated in cultured muscle cells from a series of Duchenne muscular dystrophy (DMD) patients. To facilitate clinical application, in vivo studies in animal models are required to develop safe and efficient AON-delivery methods. However, since exon skipping is a sequence-specific therapy, it is desirable to target the human DMD gene directly.

View Article and Find Full Text PDF

As small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional Becker muscular dystrophy (BMD)-like dystrophins and potential conversion of severe DMD into milder BMD phenotypes. Thus far we have used 2'-O-methyl phosphorothioate (2OMePS) AONs.

View Article and Find Full Text PDF

Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis of a largely functional dystrophin, associated with a milder Becker muscular dystrophy phenotype.

View Article and Find Full Text PDF

The dystrophin deficiency leading to the severely progressing muscle degeneration in Duchenne muscular dystrophy (DMD) patients is caused by frame-shifting mutations in the DMD gene. We are developing a reading frame correction therapy aimed at the antisense-induced skipping of targeted exons from the pre-mRNA. Despite introducing a (larger) deletion, an in-frame transcript is generated that allows the synthesis of a slightly shorter, but largely functional dystrophin as found in the mostly milder Becker muscular dystrophy (BMD).

View Article and Find Full Text PDF

Duchenne muscular dystrophy is primarily caused by frame-disrupting mutations in the Duchenne muscular dystrophy gene which abort dystrophin synthesis. We have explored a gene correction therapy aimed at restoration of the reading frame in Duchenne muscular dystrophy patients. Through the binding of antisense oligoribonucleotides to exon-internal sequences in the pre-mRNA, the splicing can be manipulated in such a manner that the targeted exon is skipped and a slightly shorter, but in-frame, transcript is generated.

View Article and Find Full Text PDF