Publications by authors named "Aaron Z Fernandis"

Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) leads to durable and complete tumour regression in some patients but in others gives temporary, partial or no response. Accordingly, significant efforts are underway to identify tumour-intrinsic mechanisms underlying ICB resistance. Results from a published CRISPR screen in a mouse model suggested that targeting STUB1, an E3 ligase involved in protein homeostasis, may overcome ICB resistance but the molecular basis of this effect remains unclear.

View Article and Find Full Text PDF

Direct measurement of various sterols in crude lipid extracts in a single experiment from limited biological samples is challenging. Current mass spectrometry (MS) based approaches usually require chemical derivatization before subjecting to MS analysis. Here, we present a derivatization-independent method for analyzing various sterols, including cholesterol and its congeners, using liquid chromatography and atmospheric pressure chemical ionization mass spectrometry.

View Article and Find Full Text PDF

It is known that apolipoprotein E (ApoE) is essential for normal lipid metabolism. ApoE is the major apolipoprotein in the central nervous system and plays a key role in neurobiology by mediating the transport of cholesterol, phospholipids, and sulfatides. We therefore examined APOE epsilon2, epsilon3, and epsilon4 knock-in mice, using electrospray ionization mass spectrometry to determine if APOE genotype or age leads to altered levels in the brain of a number of glycerophospholipids (phosphatidylinositol, PI; phosphatidylethanolamine, PE; phosphatidic acid, PA, phosphatidylserine, PS; phosphatidylcholine, PC), sphingolipids (sphingomyelin, SM; ceramide, Cer), cholesterol, and triacylglycerols.

View Article and Find Full Text PDF
Lipid-based biomarkers for cancer.

J Chromatogr B Analyt Technol Biomed Life Sci

September 2009

Lipids play important and diverse roles in cells. Most obvious functions are storage of chemical energy, provision of structural support of biological membranes and signaling. All these cellular processes are of critical relevance to cells which undergo transformation, cancer progression and metastasis.

View Article and Find Full Text PDF

Lipocalins are a broad family of proteins identified initially in eukaryotes and more recently in Gram-negative bacteria. The functions of lipocalin or lipid-binding proteins are often elusive and very diverse. Recently, we have determined the structure of GrlR (global regulator of LEE repressor), which plays a key role in the regulation of LEE (locus of enterocyte effacement) proteins.

View Article and Find Full Text PDF

The role of lipids in cancer during the genesis, progression and subsequent metastasis stages is increasingly discussed in the scientific literature. This information is discussed in a wide range of journals making it difficult for researchers to track the latest developments. A comprehensive assessment and translation of the lipidome of ovarian cancer, originating from literature, has yet to be made.

View Article and Find Full Text PDF

Purpose Of Review: Membrane lipids play important roles in signaling reactions. They are involved in most if not all cellular signaling cascades and in a wide variety of tissue and cell types. The purpose of this review is to highlight major pathways of signaling originating in membrane lipids.

View Article and Find Full Text PDF

T cells show rapid reorganization of cytoskeleton in response to antigenic stimulation. The molecular mechanisms by which TCR-CD3 regulates actin cytoskeleton are not well defined. Here we show that a type II PtdIns 4-kinase associates with cytoskeletal fraction in splenic lymphocytes in response to Con A.

View Article and Find Full Text PDF

The chemokine-CXCL12 and its receptor, CXCR4, have recently been shown to play an important role in regulating the directional migration of breast cancer cells to sites of metastasis. In the present study, we showed that CXCL12 enhanced the chemotaxis, chemoinvasion and adhesive properties of breast cancer cells; parameters that are critical for development of metastasis. We have also evaluated the signaling mechanisms that regulate CXCL12-induced and CXCR4-mediated breast cancer cell motility and invasion.

View Article and Find Full Text PDF

Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone.

View Article and Find Full Text PDF

The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells.

View Article and Find Full Text PDF

Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells.

View Article and Find Full Text PDF

Chemokines and their receptors play a critical role in host immune surveillance and are important mediators of human immunodeficiency virus (HIV) pathogenesis and inflammatory response. The chemokine receptors CCR5 and CXCR4, which act as co-receptors along with CD4 for HIV docking and entry, are down-modulated by their respective ligands, MIP-1beta/SDF-1alpha or by the HIV envelope protein, gp120. We have studied the role of the proteasome pathway in the down-regulation of these receptors.

View Article and Find Full Text PDF