Neuroimaging evidence suggests that human Brodmann area 5 (BA5) within the superior parietal lobule contributes to movement planning. However, a causal role for the contribution of BA5 to preparatory processes has yet to be reported. We used paired-pulse transcranial magnetic stimulation to investigate the influence of human BA5 on corticospinal excitability during movement preparation in the context of a GO/NO-GO task.
View Article and Find Full Text PDFShort-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness.
View Article and Find Full Text PDFTheta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions.
View Article and Find Full Text PDFCan J Neurol Sci
January 2016
Background: Short- (SICI) and long-interval intracortical inhibition (LICI) are involved in the control of movement and movement initiation. Alterations to the two circuits can result in direct alterations to the physiology of the muscles and can be used to explain the physiological changes to individuals with spinal cord injury (SCI).
Objective: To probe changes in GABAergic function by characterizing the recruitment curves of SICI and LICI interval intracortical inhibition in an upper limb muscle in chronic SCI participants with injury between C3 and C7.
Transcranial magnetic stimulation techniques allow for an in-depth investigation into the neural mechanisms that underpin human behavior. To date, the use of TMS to study human movement, has been limited by the challenges related to precisely timing the delivery of TMS to features of the unfolding movement and, also, by accurately characterizing kinematics and kinetics. To overcome these technical challenges, TMS delivery and acquisition systems should be integrated with an online motion tracking system.
View Article and Find Full Text PDFBackground: Short-latency afferent inhibition (SAI) results when somatosensory afferent input inhibits the corticospinal output from primary motor cortex (M1). The present study examined SAI in the flexor carpi radialis (FCR) muscle in individuals with spinal cord injury (SCI) and uninjured controls.
Methods: Short-latency afferent inhibition (SAI) was evoked by stimulating the median nerve at the elbow at intervals of 15, 20 and 25 ms in advance of a transcranial magnetic stimulation (TMS) pulse over M1.
Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date.
View Article and Find Full Text PDF