Publications by authors named "Aaron Wolfe"

Cell penetrating peptides are typically nonspecific, targeting multiple cell types without discrimination. However, subsets of Cell penetrating peptides (CPP) have been found, which show a 'homing' capacity or increased likelihood of internalizing into specific cell types and subcellular locations. Therapeutics intended to be delivered to tissues with a high degree of cellular diversity, such as the intraocular space, would benefit from delivery using CPP that can discriminate across multiple cell types.

View Article and Find Full Text PDF

Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions.

View Article and Find Full Text PDF

Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions.

View Article and Find Full Text PDF

The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • Vimentin intermediate filaments normally support the structure of mesenchymal cells, but can break down and release into the surrounding environment during inflammation, leading to changes in cell functions.
  • Extracellular vimentin can interact with other cells and the extracellular matrix, facilitating processes such as the activation of fibroblasts, which may contribute to fibrosis.
  • The study demonstrates that vimentin can effectively promote cell attachment and spreading on specific surfaces, influenced by carbohydrate structures that enhance cell adhesion mechanisms.
View Article and Find Full Text PDF

Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior.

View Article and Find Full Text PDF

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6.

View Article and Find Full Text PDF

Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, By contrast, polar CTDs diverge from the consensus (YSPTSPS) and are not fully functional in .

View Article and Find Full Text PDF

Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub.

View Article and Find Full Text PDF

Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors.

View Article and Find Full Text PDF

WD40 repeat proteins are frequently involved in processing cell signaling and scaffolding large multi-subunit machineries. Despite their significance in physiological and disease-like conditions, their reversible interactions with other proteins remain modestly examined. Here, we show the development and validation of a protein nanopore for the detection and quantification of WD40 repeat protein 5 (WDR5), a chromatin-associated hub involved in epigenetic regulation of histone methylation.

View Article and Find Full Text PDF

A major limitation in aging research is the lack of reliable biomarkers to assess phenotypic changes with age or monitor response to antiaging interventions. This study investigates the role of intracellular ferrous iron (Fe) as a potential biomarker of senescence. Iron is known to accumulate in various tissues with age and recent studies have demonstrated that its level increases dramatically in senescent cells.

View Article and Find Full Text PDF

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance.

View Article and Find Full Text PDF

Fenretinide is a synthetic retinoid pharmaceutical linked to ceramide build-up . Saposin D is an intralysosomal protein necessary for ceramide binding/degradation. We show, electronic absorption spectroscopy, fluorescence spectroscopy, and ceramide hydrolysis assays, that fenretinide is bound by saposin D { = (1.

View Article and Find Full Text PDF

C is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C-OO formulated in-house.

View Article and Find Full Text PDF

APOBEC1 (APO1), a member of AID/APOBEC nucleic acid cytosine deaminase family, can edit apolipoprotein B mRNA to regulate cholesterol metabolism. This APO1 RNA editing activity requires a cellular cofactor to achieve tight regulation. However, no cofactors are required for deamination on DNA by APO1 and other AID/APOBEC members, and aberrant deamination on genomic DNA by AID/APOBEC deaminases has been linked to cancer.

View Article and Find Full Text PDF

In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension.

View Article and Find Full Text PDF

APOBEC3G, a member of the double-domain cytidine deaminase (CD) APOBEC, binds RNA to package into virions and restrict HIV-1 through deamination-dependent or deamination-independent inhibition. Mainly due to lack of a full-length double-domain APOBEC structure, it is unknown how CD1/CD2 domains connect and how dimerization/multimerization is linked to RNA binding and virion packaging for HIV-1 restriction. We report rhesus macaque A3G structures that show different inter-domain packing through a short linker and refolding of CD2.

View Article and Find Full Text PDF

This article provides detailed protocols for a high-throughput fluorescence polarization (FP) spectroscopy approach to disentangle the interactions of membrane proteins with solubilizing detergents. Existing techniques for examining the membrane protein-detergent complex (PDC) interactions are low throughput and require high amounts of proteins. Here, we describe a 96-well analytical approach, which facilitates a scalable analysis of the PDC interactions at low-nanomolar concentrations of membrane proteins in native solutions.

View Article and Find Full Text PDF

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure.

View Article and Find Full Text PDF

RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA.

View Article and Find Full Text PDF

Macular degeneration is hallmarked by retinal accumulation of toxic retinoid species (e.g., A2E) for which there is no endogenous mechanism to eliminate it.

View Article and Find Full Text PDF

Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from β-barrel membrane proteins.

View Article and Find Full Text PDF

Antibodies are the most prolific biologics in research and clinical environments because of their ability to bind targets with high affinity and specificity. However, antibodies also carry liabilities. A significant portion of the life-science reproducibility crisis is driven by inconsistent performance of research-grade antibodies, and clinical antibodies are often unstable and require costly cold-chain management to reach their destinations in active form.

View Article and Find Full Text PDF