Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments.
View Article and Find Full Text PDFThe recharge of stream water below the baseflow water table can mobilize groundwater contaminants, particularly redox-sensitive and sorptive metals such as uranium. However, in-situ tracer experiments that simulate the recharge of stream water to uranium-contaminated groundwater are lacking, thus limiting the understanding of the potential mechanisms that control the mobility of uranium at the field scale. In this study, a field tracer test was conducted by injecting 100 gal (379 l) of oxic river water into a nearby suboxic and uranium-contaminated aquifer.
View Article and Find Full Text PDFA simple algebraic equation is presented here to estimate the magnitude of groundwater velocity based on data from a single-well injection-drift test thereby eliminating the time-consuming and costly extraction phase. A volume of tracer-amended water was injected by forced-gradient into a single well followed by monitoring of the conservative solute tracers under natural-gradient conditions as their upgradient portions drifted back through the well. The breakthrough curve data from the single well during the drift phase was analyzed to determine the mean travel times of the tracers.
View Article and Find Full Text PDFCharacterizing the mobility of uranium and vanadium in groundwater with a hydraulic connection to surface water is important to inform the best management practices of former mill tailing sites. In this study, the recharge of river water to the unsaturated and saturated zones of a uranium-contaminated alluvial aquifer was simulated in a series of forced-gradient single- and multi-well injection-extraction tests. The injection fluid (river water) was traced with natural and artificial tracers that included halides, fluorobenzoates, lithium, and naphthalene sulfonate to characterize the potential mass transport mechanisms of uranium and vanadium.
View Article and Find Full Text PDFSome uranium mill tailings disposal cells were constructed on dark-gray shale of the Upper Cretaceous Mancos Shale. Shale of this formation contains contaminants similar to those in mill tailings. To establish the contributions derived from the Mancos, we sampled 51 locations in Colorado, New Mexico, and Utah.
View Article and Find Full Text PDF