Publications by authors named "Aaron T Bosse"

(-)-Cylindrocyclophane A is a 22-membered C-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (-)-cylindrocyclophane A that uses 10 C-H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps).

View Article and Find Full Text PDF

A novel donor/acceptor carbene intermediate has been developed using diaryldiazoketones as carbene precursors. In the presence of the chiral dirhodium catalyst, Rh(-TPPTTL), diaryldiazoketones undergo highly regio-, stereo-, and diastereoselective C-H functionalization of activated and unactivated secondary and tertiary C-H bonds. Computational studies revealed that the arylketo group behaves differently than the carboxylate acceptor group because the orientation of the arylketo group predetermines which face of the carbene will be attacked.

View Article and Find Full Text PDF

An enantioselective formal synthesis of (-)-aflatoxin B from 4-methoxyphenylacetic acid has been achieved by an approach that produces a key carbon-carbon bond, a benzylic stereocenter, and two arene carbon-oxygen bonds in the course of three site-selective C-H functionalizations. The carbonyl-directed acetoxylation of two arene C-H bonds described herein is unprecedented in natural product synthesis and occurs under mild conditions that preserve the configuration of a sensitive benzylic stereocenter.

View Article and Find Full Text PDF

A new chiral dirhodium tetracarboxylate catalyst, Rh( S-2-Cl-5-BrTPCP), has been developed for C-H functionalization reactions by means of donor/acceptor carbene intermediates. The dirhodium catalyst contains four ( S)-1-(2-chloro-5-bromophenyl)-2,2-diphenylcyclopropane-1-carboxylate ligands, in which all four 2-chloro-5-bromophenyl groups are on the same face of the catalyst, leading to a structure, which is close to C symmetric. The catalyst induces highly site selective functionalization of remote, unactivated methylene C-H bonds even in the presence of electronically activated benzylic C-H bonds, which are typically favored using earlier established dirhodium catalysts, and the reactions proceed with high levels of diastereo- and enantioselectivity.

View Article and Find Full Text PDF