J Community Hosp Intern Med Perspect
July 2024
A top-down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well-defined sizes, shapes, and compositions that are often not accessible by wet-chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template-assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size- and shape-engineered templates and organize into open or close-packed multi-NP structures or NP metamolecules.
View Article and Find Full Text PDFThe directed self-assembly (DSA) of block copolymers (BCPs) is a powerful approach to fabricate complex nanostructure arrays, but finding morphologies that emerge with changes in polymer architecture, composition, or assembly constraints remains daunting because of the increased dimensionality of the DSA design space. Here, we demonstrate machine-guided discovery of emergent morphologies from a cylinder/lamellae BCP blend directed by a chemical grating template, conducted without direct human intervention on a synchrotron x-ray scattering beamline. This approach maps the morphology-template phase space in a fraction of the time required by manual characterization and highlights regions deserving more detailed investigation.
View Article and Find Full Text PDFAlthough the dominant view in the literature suggests that work-related anxiety experienced by employees affects their behavior and performance, little research has focused on how and when leaders' workplace anxiety affects their followers' job performance. Drawing from Emotions as Social Information (EASI) theory, we propose dual mechanisms of cognitive interference and emotional exhaustion to explain the relationship between leader workplace anxiety and subordinate job performance. Specifically, cognitive interference is the mechanism that best explains the link between leader workplace anxiety and follower task performance, while emotional exhaustion is the mechanism that best explains the link between leader workplace anxiety and follower contextual performance.
View Article and Find Full Text PDFStable high-power narrow-linewidth operation of the 2.05-2.1 µm GaSb-based diode lasers was achieved by utilizing the sixth-order surface-etched distributed Bragg reflector (DBR) mirrors.
View Article and Find Full Text PDFBackground: Tocilizumab, a monoclonal antibody directed against the interleukin-6 receptor, has been proposed to mitigate the cytokine storm syndrome associated with severe COVID-19. We aimed to investigate the association between tocilizumab exposure and hospital-related mortality among patients requiring intensive care unit (ICU) support for COVID-19.
Methods: We did a retrospective observational cohort study at 13 hospitals within the Hackensack Meridian Health network (NJ, USA).
Nanofabrication has limited most optical metamaterials to 2D or, often with multiple patterning steps, simple 3D meta-atoms that typically have limited built-in tunability. Here, with a one-step scalable patterning process, we exploit the chemical addressability and structural adaptability of colloidal Au nanocrystal assemblies to transform 2D nanocrystal/Ti bilayers into complex, 3D-structured meta-atoms and to thermally direct their shape morphing and alter their optical properties. By tailoring the length, number, and curvature of 3D helical structures in each meta-atom, we create large-area metamaterials with chiroptical responses of as high as ∼40% transmission difference between left-hand (LCP) and right-hand (RCP) circularly polarized light (Δ = - ) that are suitable for broadband circular polarizers and, upon thermally configuring their shape, switch the polarity of polarization rotation.
View Article and Find Full Text PDFMetasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms with a varying degree of form birefringence and rotation angles to create high-efficiency dielectric metasurfaces that control both the optical amplitude and phase at one or two frequencies. This opens up applications in computer-generated holography, allowing faithful reproduction of both the phase and amplitude of a target holographic scene without the iterative algorithms required in phase-only holography.
View Article and Find Full Text PDFMetasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state.
View Article and Find Full Text PDFOptical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting.
View Article and Find Full Text PDFWe demonstrate extension of electron-beam lithography using conventional resists and pattern transfer processes to single-digit nanometer dimensions by employing an aberration-corrected scanning transmission electron microscope as the exposure tool. Here, we present results of single-digit nanometer patterning of two widely used electron-beam resists: poly (methyl methacrylate) and hydrogen silsesquioxane. The method achieves sub-5 nanometer features in poly (methyl methacrylate) and sub-10 nanometer resolution in hydrogen silsesquioxane.
View Article and Find Full Text PDFWe report a large-area fabrication method to prepare chiral substrates patterned with arrays of multilayer, three-dimensional nanostructures using a combination of nanoimprint lithography and glancing angle deposition. Several structures are successfully fabricated using this method, including L-shaped, twisted arc and trilayer twisted Au nanorod structures, demonstrating its generality. As one typical example, arrays of L-shaped nanostructures, consisting of two layers of orthogonally oriented Au nanorods separated by a Ge dielectric layer in the thickness direction, exhibit giant optical chirality in the infrared region with an experimentally achieved g-factor as high as 0.
View Article and Find Full Text PDFA three-stage cascade GaSb-based diode laser heterostructure with an enhanced optical gain spectral bandwidth was designed and fabricated. The gain broadening was achieved by varying the thickness of the type-I quantum wells in different stages of the cascade active region from 10 to 14 nm. The structures were processed into bent ridge gain chips with virtually eliminated feedback from the anti-reflection-coated angled facet.
View Article and Find Full Text PDFPlanar nanocrystal/bulk heterostructures are transformed into 3D architectures by taking advantage of the different chemical and mechanical properties of nanocrystal and bulk thin films. Nanocrystal/bulk heterostructures are fabricated via bottom-up assembly and top-down fabrication. The nanocrystals are capped by long ligands introduced in their synthesis, and therefore their surfaces are chemically addressable, and their assemblies are mechanically "soft," in contrast to the bulk films.
View Article and Find Full Text PDFThe laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades.
View Article and Find Full Text PDFWe introduce direct curvature control in designing a segmented beam expander, and explore novel design possibilities for ultra-compact beam expanders. Assisted by the particle swarm optimization algorithm, we search for an optimal curvature-controlled multi-segment taper that maintains width continuity. Counterintuitively, the optimization yields a structure with abrupt width discontinuity and width compression features.
View Article and Find Full Text PDFModulus of resilience, the measure of a material's ability to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young's modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale.
View Article and Find Full Text PDFSmall-angle X-ray scattering (SAXS) often includes an unwanted background, which increases the required measurement time to resolve the sample structure. This is undesirable in all experiments, and may make measurement of dynamic or radiation-sensitive samples impossible. Here, we demonstrate a new technique, applicable when the scattering signal is background-dominated, which reduces the requisite exposure time.
View Article and Find Full Text PDFPatterning materials efficiently at the smallest length scales is a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL.
View Article and Find Full Text PDFResearch on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission.
View Article and Find Full Text PDFThe electron-doping-induced phase transition of a prototypical perovskite SmNiO induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO . Modulation of a narrow band of light is demonstrated using plasmonic metasurfaces integrated with SmNiO .
View Article and Find Full Text PDFHuman hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary.
View Article and Find Full Text PDFSilicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics.
View Article and Find Full Text PDFA central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ∼20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ∼1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26 ± 7 nm and a distribution of NV-NV separations of 16 ± 5 nm.
View Article and Find Full Text PDF