Publications by authors named "Aaron Silva Trenkle"

The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides.

View Article and Find Full Text PDF

Immunotherapy has shown promise for treating patients with autoimmune diseases or cancer, yet treatment is associated with adverse effects associated with global activation or suppression of T cell immunity. Here, we developed antigen-presenting nanoparticles (APNs) to selectively engineer disease antigen (Ag)-specific T cells by mRNA delivery. APNs consist of a lipid nanoparticle core functionalized with peptide-major histocompatibility complexes (pMHCs), facilitating antigen-specific T cell transfection through cognate T cell receptor-mediated endocytosis.

View Article and Find Full Text PDF

Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions.

View Article and Find Full Text PDF

Imaging flow cytometry (IFC) combines conventional flow cytometry with optical microscopy, allowing for high-throughput, multi-parameter screening of single-cell specimens with morphological and spatial information. However, current 3D IFC systems are limited by instrumental complexity and incompatibility with available microfluidic devices or operations. Here, we report portable light-sheet optofluidic microscopy (PLSOM) for 3D fluorescence cytometric imaging.

View Article and Find Full Text PDF

Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8 T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8 T cells equivalent to APNs produced using conventionally refolded pMHCI molecules.

View Article and Find Full Text PDF