AbstractBy allowing for increased absorption or reflectance of solar radiation, changes in pigmentation may assist ectotherms in responding to immune challenges by enabling a more precise regulation of behavioral fever or hypothermia. Variation in epigenetic characteristics may also assist in regulating immune-induced pigmentation changes and managing the body's energetic reserves following infection. Here, we explore how dorsal pigmentation, metabolic rate, and DNA methylation in the Florida scrub lizard () respond to two levels of immune challenge across two habitat types.
View Article and Find Full Text PDFAs a highly successful introduced species, house sparrows (Passer domesticus) respond rapidly to their new habitats, generating phenotypic patterns across their introduced range that resemble variation in native regions. Epigenetic mechanisms likely facilitate the success of introduced house sparrows by aiding particular individuals to adjust their phenotypes plastically to novel conditions. Our objective here was to investigate patterns of DNA methylation among populations of house sparrows at a broad geographic scale that included different introduction histories: invading, established, and native.
View Article and Find Full Text PDFVariation in DNA methylation is associated with many ecological and life history traits, including niche breadth and lifespan. In vertebrates, DNA methylation occurs almost exclusively at "CpG" dinucleotides. Yet, how variation in the CpG content of the genome impacts organismal ecology has been largely overlooked.
View Article and Find Full Text PDFAbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow () range expansion.
View Article and Find Full Text PDFTelomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development.
View Article and Find Full Text PDFThe capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes.
View Article and Find Full Text PDFIndividuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown.
View Article and Find Full Text PDFEpigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows () than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites.
View Article and Find Full Text PDFEpigenetic potential, defined as the capacity for epigenetically-mediated phenotypic plasticity, may play an important role during range expansions. During range expansions, populations may encounter relatively novel challenges while experiencing lower genetic diversity. Phenotypic plasticity via epigenetic potential might be selectively advantageous at the time of initial introduction or during spread into new areas, enabling introduced organisms to cope rapidly with novel challenges.
View Article and Find Full Text PDFCatastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the oil spill devastated large portions of the coastline along the Gulf of Mexico.
View Article and Find Full Text PDFWildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important.
View Article and Find Full Text PDFStress hormones might represent a key link between individual-level infection outcome, population-level parasite transmission, and zoonotic disease risk. Although the effects of stress on immunity are well known, stress hormones could also affect host-vector interactions via modification of host behaviours or vector-feeding patterns and subsequent reproductive success. Here, we experimentally manipulated songbird stress hormones and examined subsequent feeding preferences, feeding success, and productivity of mosquito vectors in addition to defensive behaviours of hosts.
View Article and Find Full Text PDFEpigenetic mechanisms may be important for a native species' response to rapid environmental change. Red Imported Fire Ants ( Santschi, 1916) were recently introduced to areas occupied by the Eastern Fence Lizard ( Bosc & Daudin, 1801). Behavioral, morphological and physiological phenotypes of the Eastern Fence Lizard have changed following invasion, creating a natural biological system to investigate environmentally induced epigenetic changes.
View Article and Find Full Text PDFEffective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat.
View Article and Find Full Text PDFEnvironmentally induced phenotypic plasticity may be a critical component of response to changing environments. We examined local differentiation and adaptive phenotypic plasticity in response to elevated temperature in half-sib lines collected across an elevation gradient for the alpine herb, Wahlenbergia ceracea. Using Amplified Fragment Length Polymorphism (AFLP), we found low but significant genetic differentiation between low- and high-elevation seedlings, and seedlings originating from low elevations grew faster and showed stronger temperature responses (more plasticity) than those from medium and high elevations.
View Article and Find Full Text PDFMolecular ecology has moved beyond the use of a relatively small number of markers, often noncoding, and it is now possible to use whole-genome measures of gene expression with microarrays and RNAseq (i.e. transcriptomics) to capture molecular response to environmental challenges.
View Article and Find Full Text PDFHybridization can be an important evolutionary force by generating new species and influencing evolution of parental species in multiple ways, including introgression and the consequences of hybrid vigor. Determining the ecological processes underlying evolution in hybrid zones is difficult however because it requires examining changes in both genotypic frequencies over time and corresponding ecological information, data that are rarely collected together. Here, we describe genetic and ecological aspects of a hybrid zone between the Eastern Fence Lizard, Sceloporus undulatus, and the Florida Scrub Lizard, Sceloporus woodi, occurring over at least 23 generations.
View Article and Find Full Text PDFIntroduced species offer an opportunity to study the ecological process of range expansions. Recently, 3 mechanisms have been identified that may resolve the genetic paradox (the seemingly unlikely success of introduced species given the expected reduction in genetic diversity through bottlenecks or founder effects): multiple introductions, high propagule pressure, and epigenetics. These mechanisms are probably also important in range expansions (either natural or anthropogenic), yet this possibility remains untested in vertebrates.
View Article and Find Full Text PDFBiologists have assumed that heritable variation due to DNA sequence differences (i.e., genetic variation) allows populations of organisms to be both robust and adaptable to extreme environmental conditions.
View Article and Find Full Text PDFInteractions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites.
View Article and Find Full Text PDFEcological Epigenetics studies the relationship between epigenetic variation and ecologically relevant phenotypic variation. As molecular epigenetic mechanisms often control gene expression, even across generations, they may impact many evolutionary processes. Multiple molecular epigenetic mechanisms exist, but methylation of DNA so far has dominated the Ecological Epigenetic literature.
View Article and Find Full Text PDFThe spread of invasive species presents a genetic paradox: how do individuals overcome the genetic barriers associated with introductions (e.g., bottlenecks and founder effects) to become adapted to the new environment? In addition to genetic diversity, epigenetic variation also contributes to phenotypic variation and could influence the spread of an introduced species in novel environments.
View Article and Find Full Text PDF