Publications by authors named "Aaron Sadow"

Article Synopsis
  • Electrification is crucial for reducing greenhouse gas emissions and combating climate change, but many sectors like aviation, heavy-duty transport, and chemicals will still rely on carbon.
  • The Roadmap highlights multidisciplinary strategies to create a circular economy by finding alternatives to carbon and enhancing carbon reuse through advanced separation technologies.
  • Emphasizing collaboration and applied scientific research is key to achieving significant reductions in greenhouse gas emissions.
View Article and Find Full Text PDF

Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis.

View Article and Find Full Text PDF

Supported platinum nanoparticle catalysts are known to convert polyolefins to high-quality liquid hydrocarbons using hydrogen under relatively mild conditions. To date, few studies using platinum grafted onto various metal oxide (MO) supports have been undertaken to understand the role of the acidity of the oxide support in the carbon-carbon bond cleavage of polyethylene under consistent catalytic conditions. Specifically, two Pt/MO catalysts (MO = SrTiO and SiO-AlO; Al = 3.

View Article and Find Full Text PDF

Many polymer upcycling efforts aim to convert plastic waste into high-value liquid hydrocarbons. However, the subsequent cleavage of middle distillates to light gases can be problematic. The reactor often contains a vapor phase (light gases and middle distillates) and a liquid phase (molten polymers and waxes with a suspended or dissolved catalyst).

View Article and Find Full Text PDF

Catalytic hydrogenolysis of polyolefins into valuable liquid, oil, or wax-like hydrocarbon chains for second-life applications is typically accompanied by the hydrogen-wasting co-formation of low value volatiles, notably methane, that increase greenhouse gas emissions. Catalytic sites confined at the bottom of mesoporous wells, under conditions in which the pore exerts the greatest influence over the mechanism, are capable of producing less gases than unconfined sites. A new architecture was designed to emphasize this pore effect, with the active platinum nanoparticles embedded between linear, hexagonal mesoporous silica and gyroidal cubic MCM-48 silica (mSiO/Pt/MCM-48).

View Article and Find Full Text PDF

Six new solvent-free, homoleptic paramagnetic tris(alkyl)lanthanides Ln{C(SiHMe)} () and Ln{C(SiHMe)Ph} () (Ln = Gd, Dy, and Er) were synthesized to investigate the magnetic properties of 4f organometallic compounds stabilized by secondary Ln↼H-Si and benzylic interactions. The unit cell of contains one independent molecule ( = 2), while and crystallize with four independent isostructural molecules per unit cell ( = 16). In all molecules, as in other compounds, the three tris(dimethylsilyl)methyl ligands form a trigonal planar LnC core, and six secondary interactions involving Ln↼H-Si bonding in Ln{C(SiHMe)} form above and below the equatorial plane.

View Article and Find Full Text PDF

C-H/Et-Al exchange in zirconium-catalyzed reactions of saturated hydrocarbons and AlEt affords versatile organoaluminum compounds and ethane. The grafting of commercially available Zr(OBu) on silica/alumina gives monopodal ≡SiO-Zr(OBu) surface pre-catalyst sites that are activated in situ by ligand exchange with AlEt. The catalytic C-H alumination of dodecane at 150 °C followed by quenching in air affords -dodecanol as the major product, revealing selectivity for methyl group activation.

View Article and Find Full Text PDF

A catalytic architecture, comprising a mesoporous silica shell surrounding platinum nanoparticles (NPs) supported on a solid silica sphere (mSiO/Pt-/SiO; is the mean NP diameter), catalyzes hydrogenolysis of melt-phase polyethylene (PE) into a narrow C-centered distribution of hydrocarbons in high yield using very low Pt loadings (∼10 g Pt/g PE). During catalysis, a polymer chain enters a pore and contacts a Pt NP where the C-C bond cleavage occurs and then the smaller fragment exits the pore. mSiO/Pt/SiO resists sintering or leaching of Pt and provides high yields of liquids; however, many structural and chemical effects on catalysis are not yet resolved.

View Article and Find Full Text PDF

The zeolite-supported lanthanide La(BH ) -HY catalyzes C-H borylation of benzene with pinacolborane (HBpin), providing a complementary approach to precious, late transition metal-catalyzed borylations. The reactive catalytic species are generated from La grafted at the Brønsted acid sites (BAS) in micropores of the zeolite, whereas silanoate- and aluminoate-grafted sites are inactive under the reaction conditions. During typical catalytic borylations, conversion to phenyl pinacolborane (PhBpin) is zero-order in HBpin concentration.

View Article and Find Full Text PDF

The immobilization of molecularly precise metal complexes to substrates, such as silica, provides an attractive platform for the design of active sites in heterogeneous catalysts. Specific steric and electronic variations of the ligand environment enable the development of structure-activity relationships and the knowledge-driven design of catalysts. At present, however, the three-dimensional environment of the precatalyst, much less the active site, is generally not known for heterogeneous single-site catalysts.

View Article and Find Full Text PDF

The energy efficiency, mechanical durability, and environmental compatibility of all moving machine components rely heavily on advanced lubricants for smooth and safe operation. Herein an alternative family of high-quality liquid (HQL) lubricants was derived by the catalytic conversion of pre- and post-consumer polyolefin waste. The plastic-derived lubricants performed comparably to synthetic base oils such as polyalphaolefins (PAOs), both with a wear scar volume (WSV) of 7.

View Article and Find Full Text PDF

Three-coordinate BOX ZnR ( BOX =phenyl-(4,4-dimethyl-oxazolinato; R=Me: 2 a, Et: 2 b) catalyzes the dehydrocoupling of primary or secondary silanes and alcohols to give silyl ethers and hydrogen, with high turnover numbers (TON; up to 10 ) under solvent-free conditions. Primary and secondary silanes react with small, medium, and large alcohols to give various degrees of substitution, from mono- to tri-alkoxylation, whereas tri-substituted silanes do not react with MeOH under these conditions. The effect of coordinative unsaturation on the behavior of the Zn catalyst is revealed through a dramatic variation of both rate law and experimental rate constants, which depend on the concentrations of both the alcohol and hydrosilane reactants.

View Article and Find Full Text PDF

Catalytic cleavage of strong bonds including hydrogen-hydrogen, carbon-oxygen, and carbon-hydrogen bonds is a highly desired yet challenging fundamental transformation for the production of chemicals and fuels. Transition metal-containing catalysts are employed, although accompanied with poor selectivity in hydrotreatment. Here we report metal-free nitrogen-assembly carbons (NACs) with closely-placed graphitic nitrogen as active sites, achieving dihydrogen dissociation and subsequent transformation of oxygenates.

View Article and Find Full Text PDF

Organoaluminum reagents' application in catalytic C-H bond functionalization is limited by competitive side reactions, such as carboalumination and hydroalumination. Herein, rare-earth tetramethylaluminate complexes are shown to catalyze the exclusive C-H bond metalation of terminal alkynes with the commodity reagents trimethyl-, triethyl-, and triisobutylaluminum. Kinetic experiments probing alkyl-group exchange between rare-earth aluminates and trialkylaluminum, C-H bond metalation of alkynes, and catalytic conversions reveal distinct pathways of catalytic aluminations with triethylaluminum versus trimethylaluminum.

View Article and Find Full Text PDF

Single-site organolanthanum complexes supported on mesoporous silica nanoparticles, La{C(SiHMe)}@MSNs, catalyze the ring-opening hydroboration reaction of aliphatic and styrenic epoxides with pinacolborane (HBpin). The surface-bound complexes, synthesized by reaction of the homoleptic tris(alkyl)lanthanum La{C(SiHMe)} and SBA-type MSN treated at 700 °C (MSN), are mostly monopodal ≡SiO-La{C(SiHMe)} and contain an average of one bridging La↼H-Si per alkyl ligand. This structure was established through a combination of solid-state NMR (SSNMR) experiments, including -resolved SiH coupling and quantitative Si measurements, diffuse reflectance IR, and elemental analysis.

View Article and Find Full Text PDF

Fast magic angle spinning (MAS) and indirect detection by high gyromagnetic ratio (γ) nuclei such as proton or fluorine are increasingly utilized to obtain 2D heteronuclear correlation (HETCOR) solid-state NMR spectra of spin-1/2 nuclei by using cross polarization (CP) for coherence transfer. However, one major drawback of CP HETCOR pulse sequences is that H spin diffusion during the back X→H CP transfer step may result in relayed correlations. This problem is particularly pronounced for the indirect detection of very low-γ nuclei such as Y, Rh, Ag and W where long contact times on the order of 10-30 ms are necessary for optimal CP transfer.

View Article and Find Full Text PDF

Our civilization relies on synthetic polymers for all aspects of modern life; yet, inefficient recycling and extremely slow environmental degradation of plastics are causing increasing concern about their widespread use. After a single use, many of these materials are currently treated as waste, underutilizing their inherent chemical and energy value. In this study, energy-rich polyethylene (PE) macromolecules are catalytically transformed into value-added products by hydrogenolysis using well-dispersed Pt nanoparticles (NPs) supported on SrTiO perovskite nanocuboids by atomic layer deposition.

View Article and Find Full Text PDF

The reaction of FeBr and 1 equiv of thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlTo) in THF provides ToFeBr (1), whereas FeBr and 2 equiv of TlTo react to give (To)Fe (2). Two ν bands at 1604 and 1548 cm indicated bidentate coordination of To to iron in 2. Homoleptic 2 and FeBr react in THF overnight through an unusual ligand exchange process to give compound 1, which is apparently the thermodynamic product.

View Article and Find Full Text PDF

The rhodium dicarbonyl {PhB(Ox)Im}Rh(CO) (1) and primary silanes react by oxidative addition of a nonpolar Si-H bond and, uniquely, a thermal dissociation of CO. These reactions are reversible, and kinetic measurements model the approach to equilibrium. Thus, 1 and RSiH react by oxidative addition at room temperature in the dark, even in CO-saturated solutions.

View Article and Find Full Text PDF

The high catalytic reactivity of homoleptic tris(alkyl) lanthanum La{C(SiHMe ) } is highlighted by C-O bond cleavage in the hydroboration of esters and epoxides at room temperature. The catalytic hydroboration tolerates functionality typically susceptible to insertion, reduction, or cleavage reactions. Turnover numbers (TON) up to 10 000 are observed for aliphatic esters.

View Article and Find Full Text PDF

A comprehensive analysis of the bonding structure of the disilyl zirconocene amide cation {CpZr[N(SiHMe)]} is conducted by application of an intrinsic orbital localization method that yields quasi-atomic orbitals (QUAOs). An emphasis is placed on describing a previously characterized three-center two-electron interaction between zirconium, hydrogen, and silicon that presents structural and spectroscopic features similar to that of agostic bonds. Expressions of the first-order density matrix in terms of the QUAOs yields bond orders (BOs), kinetic bond orders (KBOs), and the extent of transfer of charge that are useful to determine the electronic nature of the Zr-H-Si bond.

View Article and Find Full Text PDF

The organocobalt scorpionate compounds ToMCoR (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate; R = Bn, 1; CH2SiMe3, 2; Ph, 3; Et, 4; nBu, 5; Me, 6) react in carbonylation, oxidation, and carboxylation reactions via pathways that are distinctly influenced by the nature of the organometallic moiety. The compounds are prepared by reaction of ToMCoCl with the corresponding organolithium or organopotassium reagents. Compounds 1-6 were characterized by 8-line hyperfine coupling to cobalt in EPR spectra and solution phase magnetic measurements (μeff = 4-5μB) as containing a high-spin cobalt(ii) center.

View Article and Find Full Text PDF

A new bulky silazido ligand, -N(SiHMe2)Dipp (Dipp = C6H3-2,6-iPr2), supports planar, three-coordinate homoleptic rare earth complexes Ln{N(SiHMe2)Dipp}3 (Ln = Sc, Y, and Lu), each containing three secondary Ln↼HSi interactions and one agostic CH bond. Y{N(SiHMe2)Dipp}3 and acetophenone react via hydrosilylation, rather than by insertion into the Y-N bond or by enolate formation.

View Article and Find Full Text PDF

Many transition metals commonly encountered in inorganic materials and organometallic compounds possess NMR-active nuclei with very low gyromagnetic ratios (γ) such as Y, Rh, Ag, and W. A low-γ leads to poor NMR sensitivity and other experimental challenges. Consequently, nuclei with low-γ are often impossible to study with conventional solid-state NMR methods.

View Article and Find Full Text PDF

We utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmc8bh0s7l0b2ivug0cpab52l6s7a0i63): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once