Publications by authors named "Aaron S Field"

Importance: Traumatic brain injury (TBI) is a leading cause of death and disability in children, and predicting functional outcome after TBI is challenging. Magnetic resonance imaging (MRI) is frequently conducted after severe TBI; however, the predictive value of MRI remains uncertain.

Objectives: To identify early MRI measures that predict long-term outcome after severe TBI in children and to assess the added predictive value of MRI measures over well-validated clinical predictors.

View Article and Find Full Text PDF

There has been extensive growth in both the technical development and the clinical applications of MRI, establishing this modality as one of the most powerful diagnostic imaging tools. However, long examination and image interpretation times still limit the application of MRI, especially in emergent clinical settings. Rapid and abbreviated MRI protocols have been developed as alternatives to standard MRI, with reduced imaging times, and in some cases limited numbers of sequences, to more efficiently answer specific clinical questions.

View Article and Find Full Text PDF

Purpose: To improve image quality and resolution of dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI) by developing acquisition and reconstruction methods exploiting the temporal regularity property of DSC-PWI signal.

Theory And Methods: A novel regularized reconstruction is proposed that recovers DSC-PWI series from interleaved segmented spiral k-space acquisition using higher order temporal smoothness (HOTS) properties of the DSC-PWI signal. The HOTS regularization is designed to tackle representational insufficiency of the standard first-order temporal regularizations for supporting higher accelerations.

View Article and Find Full Text PDF

Young children with severe traumatic brain injury (TBI) have frequently been excluded from studies due to age and/or mechanism of injury. Magnetic resonance imaging (MRI) is now frequently being utilized to detect parenchymal injuries and early cerebral edema. We sought to assess MRI findings in infants with severe TBI, and to determine the association between specific MRI findings and mechanisms of injury, including abusive head trauma (AHT).

View Article and Find Full Text PDF

Purpose: T -weighted and T -weighted (T1w and T2w) imaging are essential sequences in routine clinical practice to detect and characterize a wide variety of pathologies. Many approaches have been proposed to obtain T1w and T2w contrast, although many challenges still remain, including long acquisition time and limitations that favor 2D imaging. In this study, we propose a novel method for simultaneous T1w and T2w imaging using RF phase-modulated 3D gradient-echo imaging.

View Article and Find Full Text PDF

A comprehensive mapping of the structural and functional circuitry of the brain is a major unresolved problem in contemporary neuroimaging research. Diffusion-weighted and functional MRI have provided investigators with the capability to assess structural and functional connectivity in-vivo, driven primarily by methods of white matter tractography and resting-state fMRI, respectively. These techniques have paved the way for the construction of the functional and structural connectomes, which are quantitative representations of brain architecture as neural networks, comprised of nodes and edges.

View Article and Find Full Text PDF

Purpose: To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI).

Methods: Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes.

View Article and Find Full Text PDF

Irradiation of food at 50-55 kGy results in a profound, chronic demyelinating-remyelinating disease of the entire central nervous system (CNS) in cats, named Feline Irradiated Diet-Induced Demyelination (FIDID). This study examines the early stages of demyelination and long-term consequences of demyelination and remyelination on axon survival or loss. Myelin vacuolation is the primary defect leading to myelin breakdown, demyelination then prompt remyelination in the spinal cord and brain.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a common cause of neurologic disease in young adults that is primarily treated with disease-modifying therapies which target the immune and inflammatory responses. Promotion of remyelination has opened a new therapeutic avenue, but how best to determine efficacy of remyelinating drugs remains unresolved. Although prolongation and then shortening of visual evoked potential (VEP) latencies in optic neuritis in MS may identify demyelination and remyelination, this has not been directly confirmed.

View Article and Find Full Text PDF

Background: The feeding of irradiated food to healthy adult cats results in widespread, noninflammatory demyelination of the central nervous system (CNS); a return to a normal diet results in endogenous remyelination with functional recovery. This recently discovered, reversible disease might provide a compelling clinical neuroimaging model system for the development and testing of myelin-directed MRI methods as well as future remyelination therapies.

Purpose: Identify the noninvasive imaging characteristics of this new disease model and determine whether it features measurable changes on conventional and quantitative MRI.

View Article and Find Full Text PDF

Operative management of intrinsic brainstem lesions remains challenging despite advances in electrophysiological monitoring, neuroimaging, and neuroanatomical knowledge. Surgical intervention in this region requires detailed knowledge of adjacent critical white matter tracts, brainstem nuclei, brainstem vessels, and risks associated with each surgical approach. Our aim was to systematically verify internal anatomy associated with each brainstem safety entry zone (BSEZ) via neuroimaging modalities commonly used in pre-operative planning, namely high-resolution magnetic resonance imaging (MRI) and diffusion tensor tractography (DTT).

View Article and Find Full Text PDF

Purpose To develop and evaluate a retrospective method to minimize motion artifacts in structural MRI. Materials and Methods The motion-correction strategy was developed for three-dimensional radial data collection and demonstrated with MPnRAGE, a technique that acquires high-resolution volumetric magnetization-prepared rapid gradient-echo, or MPRAGE, images with multiple tissue contrasts. Forty-four pediatric participants (32 with autism spectrum disorder [mean age ± standard deviation, 13 years ± 3] and 12 age-matched control participants [mean age, 12 years ± 3]) were imaged without sedation.

View Article and Find Full Text PDF

Many facets of an image acquisition workflow leave a digital footprint, making workflow analysis amenable to an informatics-based solution. This paper describes a detailed framework for analyzing workflow and uses acute stroke response timeliness in CT as a practical demonstration. We review methods for accessing the digital footprints resulting from common technologist/device interactions.

View Article and Find Full Text PDF

Background: Hypertrophic olivary degeneration (HOD) occurs because of posterior fossa or brainstem lesions that disrupt the dentato-rubro-olivary tract, well known as the Guillain-Mollaret triangle. Clinical and radiologic hallmarks of this condition are palatal myoclonus and T2 hyperintensity of the inferior olivary complex on magnetic resonance imaging (MRI), respectively. Because symptomatic HOD can complicate the recovery of patients with posterior fossa or brainstem lesions, the purpose of this study is to evaluate clinical and imaging findings of patients with HOD.

View Article and Find Full Text PDF

Background: Using diffusion tensor imaging (DTI) in neurosurgical planning allows identification of white matter tracts and has been associated with a reduction in postoperative functional deficits.

Objective: This study explores the relationship between the lesion-to-tract distance (LTD) and postoperative morbidity and mortality in patients with brain tumors in order to evaluate the role of DTI in predicting postoperative outcomes.

Methods: Adult patients with brain tumors (n = 60) underwent preoperative DTI.

View Article and Find Full Text PDF

Purpose: To assess the impact of separate non-image interpretive task and image-interpretive task workflows in an academic neuroradiology practice.

Materials And Methods: A prospective, randomized, observational investigation of a centralized academic neuroradiology reading room was performed. The primary reading room fellow was observed over a one-month period using a time-and-motion methodology, recording frequency and duration of tasks performed.

View Article and Find Full Text PDF

Background: To evaluate mean apparent diffusion coefficient (ADC) values on pre-radiotherapy magnetic resonance (MR) at sites that gave rise to glioblastoma (GBM) recurrence compared to similar surrounding background tissue that did not progress to tumor.

Methods: Twenty out of 110 consecutive patients with pathology proven GBM treated at our institution from 1/1/2009 to 5/31/2012 had definitive recurrence 6 months following radiotherapy. In this single-center retrospective cohort study, pre- and post-radiotherapy MR brain exams were evaluated.

View Article and Find Full Text PDF

Background And Purpose: Functional magnetic resonance imaging (fMRI) is a non-invasive pre-surgical tool used to assess localization and lateralization of language function in brain tumor and vascular lesion patients in order to guide neurosurgeons as they devise a surgical approach to treat these lesions. We investigated the effect of varying the statistical thresholds as well as the type of language tasks on functional activation patterns and language lateralization. We hypothesized that language lateralization indices (LIs) would be threshold- and task-dependent.

View Article and Find Full Text PDF

Purpose: Parameters of the two-pool model describing magnetization transfer (MT) in macromolecule-rich tissues may be significantly biased in partial volume (PV) voxels containing cerebrospinal fluid (CSF). The purpose of this study was to develop a quantitative MT (qMT) method that provides indices insensitive to CSF PV averaging.

Theory And Methods: We propose a three-pool MT model, in which PV macro-compartment is modeled as an additional nonexchanging water pool.

View Article and Find Full Text PDF

The potential utility of diffusion tensor (DT) imaging in clinical practice is broad, and new applications continue to evolve as technology advances. Clinical applications of DT imaging and tractography include tissue characterization, lesion localization, and mapping of white matter tracts. DT imaging metrics are sensitive to microstructural changes associated with central nervous system disease; however, further research is needed to enhance specificity so as to facilitate more widespread clinical application.

View Article and Find Full Text PDF

Object: Functional MRI (fMRI) has the potential to be a useful presurgical planning tool to treat patients with primary brain tumor. In this study the authors retrospectively explored relationships between language-related postoperative outcomes in such patients and multiple factors, including measures estimated from task fMRI maps (proximity of lesion to functional activation area, or lesion-to-activation distance [LAD], and activation-based language lateralization, or lateralization index [LI]) used in the clinical setting for presurgical planning, as well as other factors such as patient age, patient sex, tumor grade, and tumor volume.

Methods: Patient information was drawn from a database of patients with brain tumors who had undergone preoperative fMRI-based language mapping of the Broca and Wernicke areas.

View Article and Find Full Text PDF

The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents, and hence providing rich information about complex tissue microstructure properties. Bessel Fourier orientation reconstruction (BFOR) is one of several analytical, non-Cartesian EAP reconstruction schemes employing multiple shell acquisitions that have recently been proposed. Such modeling bases have not yet been fully exploited in the extraction of rotationally invariant q-space indices that describe the degree of diffusion anisotropy/restrictivity.

View Article and Find Full Text PDF

Caloric restriction (CR) reduces the pathological effects of aging and extends the lifespan in many species, including nonhuman primates, although the effect on the brain is less well characterized. We used two common indicators of aging, motor performance speed and brain iron deposition measured in vivo using magnetic resonance imaging, to determine the potential effect of CR on elderly rhesus macaques eating restricted (n=24, 13 males, 11 females) and standard (n=17, 8 males, 9 females) diets. Both the CR and control monkeys showed age-related increases in iron concentrations in globus pallidus (GP) and substantia nigra (SN), although the CR group had significantly less iron deposition in the GP, SN, red nucleus, and temporal cortex.

View Article and Find Full Text PDF

Magnetization transfer (MT) imaging quantitatively assesses cerebral white matter disease through its sensitivity to macromolecule-bound protons including those associated with myelin proteins and lipid bilayers. However, traditional MT contrast measured by the MT ratio (MTR) lacks pathologic specificity as demyelination, axon loss, inflammation and edema all impact MTR, directly and/or indirectly through multiple covariances among imaging parameters (particularly MTR with T(1)) and tissue features (e.g.

View Article and Find Full Text PDF