Rapid, on-site diagnostics allow for timely intervention and response for warfighter support, environmental monitoring, and global health needs. Portable optical biosensors are being widely pursued as a means of achieving fieldable biosensing due to the potential speed and accuracy of optical detection. We recently developed the portable engineered analytic sensor with automated sampling (PEGASUS) with the goal of developing a fieldable, generalizable biosensing platform.
View Article and Find Full Text PDFThe separation of biomarkers from blood is straightforward in most molecular biology laboratories. However, separation in resource-limited settings, allowing for the successful removal of biomarkers for diagnostic applications, is not always possible. The situation is further complicated by the need to separate hydrophobic signatures such as lipids from blood.
View Article and Find Full Text PDFMycolactone, the amphiphilic macrolide toxin secreted by , plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development.
View Article and Find Full Text PDFEarly diagnosis of active tuberculosis (TB) remains an elusive challenge, especially in individuals with disseminated TB and HIV co-infection. Recent studies have shown a promise for the direct detection of pathogen-specific biomarkers such as lipoarabinomannan (LAM) for the diagnosis of TB in HIV-positive individuals. Currently, traditional immunoassay platforms that suffer from poor sensitivity and high non-specific interactions are used for the detection of such biomarkers.
View Article and Find Full Text PDFLipoarabinomannan (LAM) is a critical virulence factor in the pathogenesis of Mycobacterium tuberculosis, the causative agent of tuberculosis. LAM is secreted in urine and serum from infected patients and is being studied as a potential diagnostic indicator for the disease. Herein, we present a novel ultra-sensitive and specific detection strategy for monomeric LAM based on its amphiphilic nature and consequent interaction with supported lipid bilayers.
View Article and Find Full Text PDFNo single biomarker can accurately predict disease. An ideal biodetection technology should be capable of the quantitative, reproducible, and sensitive detection of a limited suite of such molecules. To this end, we have developed a multiplex biomarker assay for protective antigen and lethal factor of the Bacillus anthracis lethal toxin using semiconductor quantum dots as the fluorescence reporters on our waveguide-based biosensor platform.
View Article and Find Full Text PDFThe sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor for the detection of biomarkers associated with disease. We have previously demonstrated the application of this technology to the sensitive detection of carcinoembryonic antigen in serum and nipple aspirate fluid from breast cancer patients. In this publication, we report improvements to this technology that will facilitate transition to a point-of-care diagnostic system and/or robust research tool.
View Article and Find Full Text PDFOptical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases.
View Article and Find Full Text PDFWe report a general procedure to prepare functional organic thin films for biological assays on oxide surfaces. Silica surfaces were functionalized by self-assembly of an amine-terminated silane film using both vapor- and solution-phase deposition of 3'-aminopropylmethyldiethoxysilane (APMDES). We found that vapor-phase deposition of APMDES under reduced pressure produced the highest quality monolayer films with uniform surface coverage, as determined by atomic force microscopy (AFM), ellipsometry, and contact angle measurements.
View Article and Find Full Text PDFA series of racemic and chiral, nonracemic lactams that display high binding affinities, functional chemotaxis antagonism, and selectivity toward CCR4 are described. Compound 41, which provides reasonably high blood levels in mice when dosed intraperitoneally, was identified as a useful pharmacological tool to explore the role of CCR4 antagonism in animal models of allergic disease.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2004
Substituted thiazolidinones were identified as CCR4 antagonists from high throughput screening. Subsequent lead optimization efforts resulted in defined structure-activity relationships and the identification of potent antagonists (compounds 90 and 91) that inhibited the chemotaxis of Th2 T-cells in vitro.
View Article and Find Full Text PDF