Publications by authors named "Aaron R Navratil"

Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection.

View Article and Find Full Text PDF

Objective: Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis.

View Article and Find Full Text PDF

Arachidonic acid (AA, 20:4) is an omega-6 polyunsaturated fatty acid (PUFA) and the main precursor to the class of lipid mediators known as eicosanoids. The enzymes that catalyze the oxygenation of AA begin by abstracting hydrogen from one of three bis-allylic carbons within 1,4-cis,cis-diene units. Substitution of deuterium for hydrogen has been shown to lead to massive kinetic isotope effects (KIE) for soybean lipoxygenase (sLOX) oxygenation of linoleic acid (LA, 18:2).

View Article and Find Full Text PDF

Background: Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries and the underlying cause of cardiovascular disease, a major cause of mortality worldwide. The over-accumulation of modified cholesterol-containing low-density lipoproteins (e.g.

View Article and Find Full Text PDF

Francisella tularensis induces the synthesis of prostaglandin E(2) (PGE(2)) by infected macrophages to alter host immune responses, thus providing a survival advantage to the bacterium. We previously demonstrated that PGE(2) synthesis by F. tularensis-infected macrophages requires cytosolic phospholipase A2 (cPLA(2)), cyclooxygenase 2 (COX-2), and microsomal prostaglandin E synthase 1 (mPGES1).

View Article and Find Full Text PDF

Francisella tularensis, the causative agent of tularemia, modulates the host immune response to gain a survival advantage within the host. One mechanism of immune evasion is the ability of F. tularensis to induce the synthesis of the small lipid mediator prostaglandin E2 (PGE2), which alters the host T cell response making the host more susceptible to Francisella growth.

View Article and Find Full Text PDF