Expansion of (CCG)n·(CGG)n trinucleotide repeats leads to hypermethylation of cytosine residues and results in Fragile X syndrome, the most common cause of inherited intellectual disability in humans. The (CCG)n·(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical protonated nucleobase pairs of cytosine (C(+)·C). Previously, we investigated the effects of 5-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques.
View Article and Find Full Text PDFVibrational spectroscopy and NMR demonstrate that the proton-bound dimer of 1-methylcytosine, 1, has an unsymmetrical structure at room temperature. In the gas phase, investigation of isolated homodimer 1 reveals five fundamental NH vibrations by IR Multiple Photon Dissociation (IRMPD) action spectroscopy. The NH···N stretching vibration between the two ring nitrogens exhibits a frequency of 1570 cm(-1), as confirmed by examination of the proton-bound homodimers of 5-fluoro-1-methycytosine, 2, and of 1,5-dimethylcytosine, 3, which display absorptions in the same region that disappear upon deuterium substitution.
View Article and Find Full Text PDFVibrational spectra of two gaseous cations having NH···O intramolecular ionic hydrogen bonds and of nine protonated di- and polyamines having NH···N internal proton bridges, recorded using IR Multiple Photon Dissociation (IRMPD) of mass-selected ions, are reported. The band positions of hydroxyl stretching frequencies do not shift when a protonated amine becomes hydrogen bonded to oxygen. In three protonated diamines, lower frequency bands (550-650 cm(-1)) disappear upon isotopic substitution, as well as several bands in the 1100-1350 cm(-1) region.
View Article and Find Full Text PDFHemiprotonated dimers of cytosine derivatives, implicated in the formation of the i-motif of DNA, have been created in solution and the gas phase. The mechanism of dimerization has been analyzed by mass spectrometry and multidimensional NMR spectroscopy.
View Article and Find Full Text PDFVibrational spectra of the conjugate acid of Me(2)NCH(2)CH(2)CH(2)CH(2)NMe(2) (N,N,N',N'-tetramethylputrescine) have been examined in the gaseous and crystalline phases using Infrared Multiple Photon Dissociation (IRMPD) spectroscopy, Inelastic Neutron Scattering (INS), and high pressure Raman spectroscopy. A band observed near 530 cm(-1) is assigned to the asymmetric stretch of the bridging proton between the two nitrogens, based on deuterium substitution and pressure dependence. The NN distance measured by X-ray crystallography gives a good match to DFT calculations, and the experimental band position agrees with the value predicted from theory using a 2-dimensional potential energy surface.
View Article and Find Full Text PDF