Inactivation of tumor suppressors is among the rate-limiting steps in carcinogenesis that occur during the tumor promotion stage. The translation inhibitor programmed cell death 4 (Pdcd4) suppresses tumorigenesis and invasion. Although Pdcd4 is not mutationally inactivated in human cancer, the mechanisms controlling Pdcd4 inactivation during tumorigenesis remain elusive.
View Article and Find Full Text PDFProgrammed cell death 4 (Pdcd4) is a novel repressor of in vitro transformation. Pdcd4 directly inhibits the helicase activity of eukaryotic translation initiation factor 4A, a component of the translation initiation complex. To ascertain whether Pdcd4 suppresses tumor development in vivo, we have generated transgenic mice that overexpress Pdcd4 in the epidermis (K14-Pdcd4).
View Article and Find Full Text PDFProgrammed cell death 4 (Pdcd4), originally identified as an inhibitor of murine cellular transformation, inhibits protein synthesis by directly interacting with eukaryotic initiation factor 4A (eIF4A) of the translation initiation complex. The relevance of Pdcd4 to a broad range of human cancers derived from multiple tissue sites is unknown. Protein expression patterns from the National Cancer Institute drug-screening panel of 60 human cancer cells (NCI60) were analyzed by Western blot methods and revealed frequent reduction of Pdcd4 protein levels in renal-, lung-, and glia-derived tumors.
View Article and Find Full Text PDFPdcd4 is a novel transformation suppressor that inhibits tumor promoter-induced neoplastic transformation and the activation of AP-1-dependent transcription required for transformation. A yeast two-hybrid analysis revealed that Pdcd4 associates with the eukaryotic translation initiation factors eIF4AI and eIF4AII. Immunofluorescent confocal microscopy showed that Pdcd4 colocalizes with eIF4A in the cytoplasm.
View Article and Find Full Text PDF