With the development of accurate protein structure prediction algorithms, artificial intelligence (AI) has emerged as a powerful tool in the field of structural biology. AI-based algorithms have been used to analyze large amounts of protein sequence data including the human proteome, complementing experimental structure data found in resources such as the Protein Data Bank. The EBI AlphaFold Protein Structure Database (for example) contains over 230 million structures.
View Article and Find Full Text PDFChemical defense systems involving tryptophan-derived secondary metabolites (TDSMs) and salicylic acid (SA) are induced by general nonself signals and pathogen signals, respectively, in Arabidopsis thaliana. Whether and how these chemical defense systems are connected and balanced is largely unknown. In this study, we identified the AVRRPT2-INDUCED GENE2A (AIG2A) and AIG2B genes as gatekeepers that prevent activation of SA defense systems by TDSMs.
View Article and Find Full Text PDFElongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear.
View Article and Find Full Text PDFExcitation-contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca channels, dihydropyridine receptor (DHPR; voltage-dependent L-type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous.
View Article and Find Full Text PDFClamp loaders ensure processive DNA replication by loading the toroidal shaped sliding clamps onto the DNA. The sliding clamps serve as a platform for the attachment of polymerases and several other proteins associated with the regulation of various cellular processes. Clamp loaders are fascinating as nanomachines that engage in protein-protein and protein-DNA interactions.
View Article and Find Full Text PDFEfficient control of transcription is essential in all organisms. In bacteria, where DNA replication and transcription occur simultaneously, the replication machinery is at risk of colliding with highly abundant transcription complexes. This can be exacerbated by the fact that transcription complexes pause frequently.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2022
Contamination of drinking water with toxic inorganic arsenic is a major public health issue. The mechanisms of enzymes and transporters in arsenic elimination are therefore of interest. The human omega-class glutathione transferases have been previously shown to possess monomethylarsonate (V) reductase activity.
View Article and Find Full Text PDFThe low G + C Gram-positive bacteria represent some of the most medically and industrially important microorganisms. They are relied on for the production of food and dietary supplements, enzymes and antibiotics, as well as being responsible for the majority of nosocomial infections and serving as a reservoir for antibiotic resistance. Control of gene expression in this group is more highly studied than in any bacteria other than the Gram-negative model Escherichia coli, yet until recently no structural information on RNA polymerase (RNAP) from this group was available.
View Article and Find Full Text PDFIn bacteria, transcription complexes stalled on DNA represent a major source of roadblocks for the DNA replication machinery that must be removed in order to prevent damaging collisions. Gram-positive bacteria contain a transcription factor HelD that is able to remove and recycle stalled complexes, but it was not known how it performed this function. Here, using single particle cryo-electron microscopy, we have determined the structures of Bacillus subtilis RNA polymerase (RNAP) elongation and HelD complexes, enabling analysis of the conformational changes that occur in RNAP driven by HelD interaction.
View Article and Find Full Text PDFGlutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1β and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor was undertaken.
View Article and Find Full Text PDFBioluminescence in marine systems is dominated by the use of coelenterazine for light production. The bioluminescent reaction of coelenterazine is an enzyme catalyzed oxidative decarboxylation: coelenterazine reacts with molecular oxygen to form carbon dioxide, coelenteramide, and light. One such class is the Ca -regulated photoproteins.
View Article and Find Full Text PDFDNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions.
View Article and Find Full Text PDFBacterial sliding clamps bind to DNA and act as protein-protein interaction hubs for several proteins involved in DNA replication and repair. The partner proteins all bind to a common pocket on sliding clamps via conserved linear peptide sequence motifs, which suggest the pocket as an attractive target for development of new antibiotics. Herein we report the X-ray crystal structures and biochemical characterization of β sliding clamps from the Gram-negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae.
View Article and Find Full Text PDFThe human sliding clamp (PCNA) controls access to DNA for many proteins involved in DNA replication and repair. Proteins are recruited to the PCNA surface by means of a short, conserved peptide motif known as the PCNA-interacting protein box (PIP-box). Inhibitors of these essential protein-protein interactions may be useful as cancer therapeutics by disrupting DNA replication and repair in these highly proliferative cells.
View Article and Find Full Text PDFApolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded β-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-β burden in Alzheimer's disease mouse models.
View Article and Find Full Text PDFEarly stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors.
View Article and Find Full Text PDFIn bacteria, the DnaG primase is responsible for synthesis of short RNA primers used to initiate chain extension by replicative DNA polymerase(s) during chromosomal replication. Among the proteins with which DnaG interacts is the single-stranded DNA-binding protein, SSB. The C-terminal hexapeptide motif of SSB (DDDIPF; SSB-Ct) is highly conserved and is known to engage in essential interactions with many proteins in nucleic acid metabolism, including primase.
View Article and Find Full Text PDFGlutathione transferase Omega 1 (GSTO1-1) is an atypical GST reported to play a pro-inflammatory role in response to LPS. Here we show that genetic knockout of Gsto1 alters the response of mice to three distinct inflammatory disease models. GSTO1-1 deficiency ameliorates the inflammatory response stimulated by LPS and attenuates the inflammatory impact of a high fat diet on glucose tolerance and insulin resistance.
View Article and Find Full Text PDFExcitation-contraction (EC) coupling in skeletal muscle requires a physical interaction between the voltage-gated calcium channel dihydropyridine receptor (DHPR) and the ryanodine receptor Ca release channel. Although the exact molecular mechanism that initiates skeletal EC coupling is unresolved, it is clear that both the α and β subunits of DHPR are essential for this process. Here, we employed a series of techniques, including size-exclusion chromatography-multi-angle light scattering, differential scanning fluorimetry, and isothermal calorimetry, to characterize various biophysical properties of the skeletal DHPR β subunit β Removal of the intrinsically disordered N and C termini and the hook region of β prevented oligomerization, allowing for its structural determination by X-ray crystallography.
View Article and Find Full Text PDFA range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes.
View Article and Find Full Text PDFIn all domains of life, DNA synthesis occurs bidirectionally from replication origins. Despite variable rates of replication fork progression, fork convergence often occurs at specific sites. Escherichia coli sets a 'replication fork trap' that allows the first arriving fork to enter but not to leave the terminus region.
View Article and Find Full Text PDFThe bacterial DNA replication machinery presents new targets for the development of antibiotics acting via novel mechanisms. One such target is the protein-protein interaction between the DNA sliding clamp and the conserved peptide linear motifs in DNA polymerases. We previously established that binding of linear motifs to the Escherichia coli sliding clamp occurs via a sequential mechanism that involves two subsites (I and II).
View Article and Find Full Text PDF