We report on a fused deposition modeling 3D-printable rotary valve fabricated from high-grade plastics such as polyether ether ketone or lower-grade plastics like polylactic acid. The valve weighs less than 90 g and has the potential to be integrated into portable and autonomous chemical analysis systems. It has been demonstrated to be leak-proof up to 2.
View Article and Find Full Text PDFIndium seals have been used extensively in ultra-high vacuum and cryogenic applications. Typically, these seals use indium alongside or in place of other metal gaskets in stainless-steel vacuum flanges, with some custom applications for flanges sealing directly with glass (optics or tubes). Here, we present the design and performance of three pressed indium seals (99.
View Article and Find Full Text PDFCapillary temperature control during capillary electrophoresis (CE) separations is key for achieving accurate and reproducible results with a broad array of potential methods. However, the difficulty of enabling typical fluid temperature control loops on portable instruments has meant that active capillary temperature control of in situ CE systems has frequently been overlooked. This work describes construction and test of a solid-state device for capillary temperature control that is suitable for inclusion with in situ instruments, including those designed for space missions.
View Article and Find Full Text PDFWe report here the first fully automated capillary electrophoresis (CE) system that can be operated underwater. The system performs sample acquisition and analysis by coupling CE to contactless conductivity detection. Using 5 M acetic acid as the background electrolyte (BGE), inorganic cations and amino acids at concentrations as low as 5.
View Article and Find Full Text PDFCapillary electrophoresis (CE) holds great promise as an in situ analytical technique for a variety of applications. However, typical instrumentation operates with open reservoirs (e.g.
View Article and Find Full Text PDFSample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred.
View Article and Find Full Text PDFOcean worlds such as Europa and Enceladus are high priority targets in the search for past or extant life beyond Earth. Evidence of life may be preserved in samples of surface ice by processes such as deposition from active plumes, hydrofracturing, or thermal convection. Terrestrial life produces unique distributions of organic molecules that translate into recognizable biosignatures.
View Article and Find Full Text PDFFatty acids are a well-established class of compounds targeted as biosignatures for future missions to look for evidence of life on ocean worlds such as Europa and Enceladus. In order to establish their abiotic or biotic origin, we need to separate and quantify fatty acids to determine their relative abundances within a sample. In this study, we demonstrate the high potential of capillary electrophoresis coupled to mass spectrometry (CE-MS) for the efficient separation and sensitive detection of a wide variety of fatty acids.
View Article and Find Full Text PDFCapillary electrophoresis (CE) is a promising liquid-based technique for chemical analysis on ocean worlds that allows the detection of a wide range of organic molecules relevant to the search for life. CE coupled with mass spectrometry (MS) is particularly valuable as it also enables the discovery of unknown compounds. Here we demonstrate that CE coupled to MS via electrospray ionization (ESI) can readily analyze samples containing up to half the saturation levels of salts relevant to ocean worlds when using 5 M acetic acid as the separation media.
View Article and Find Full Text PDFCapillary electrophoresis (CE) systems have undergone extensive development for spaceflight applications. A flight-compatible high voltage power supply and the necessary voltage isolation for other energized components can be large contributors to both the volume and mass of a CE system, especially if typical high voltage levels of 25-30 kV are used. Here, we took advantage of our custom CE hardware to perform a trade study for simultaneous optimization of capillary length, high voltage level, and separation time, without sacrificing method performance.
View Article and Find Full Text PDFIn situ missions of exploration require analytical methods that are capable of detecting a wide range of molecular targets in complex matrices without a priori assumptions of sample composition. Furthermore, these methods should minimize the number of reagents needed and any sample preparation steps. We have developed a method for the detection of metabolically relevant inorganic and organic anions that is suitable for implementation on in situ spaceflight missions.
View Article and Find Full Text PDFThe in situ search for chemical signatures of life on extraterrestrial worlds requires automated hardware capable of performing detailed compositional analysis during robotic missions of exploration. The use of electrophoretic separations in this search is particularly powerful, enabling analysis of a wide range of soluble organic compounds potentially indicative of life, as well as inorganic compounds that can serve as indicators of habitability. However, to detect this broad range of compounds with a single electrophoresis instrument, a combination of different detection modes is required.
View Article and Find Full Text PDFSilver ions (Ag+) have been proposed as a biocide to treat the water in NASA's next generation of human space exploration vehicles/habitats. One advantage of Ag+ is that it is effective as a biocide in a range (200 to 500 ppb) safe for human consumption. So, monitoring Ag+ is essential to ensure the safety and health of the crew.
View Article and Find Full Text PDFThis work investigated microorganism survival under temperature and ultraviolet (UV) radiation conditions found at the surface of ice-covered ocean worlds. These studies were motivated by a desire to understand the ability of resilient forms of life to survive under such conditions as a proxy for potential endogenic life and to inform planetary protection protocols for future missions. To accomplish this, we irradiated spores with solar-like UV photons at temperatures ranging from room temperature down to 11 K and reported survival fractions with respect to fluence.
View Article and Find Full Text PDFFuture spaceflight missions focused on life detection will carry with them new, state-of-the-art instrumentation capable of highly selective and sensitive organic analysis. CE-LIF is an ideal candidate for such a mission due to its high separation efficiency and low LODs. One perceived risk of utilizing this technique on a future mission is the stability of the chemical reagents in the spaceflight environment.
View Article and Find Full Text PDFUnambiguous detection of chemical and physical signatures of microbial life on Mars or other solar system bodies requires differentiation between signals produced by biotic and abiotic processes; instruments aimed at generalized extant life detection would therefore increase the science return of a life-detection mission. Here, we investigate Bioelectrochemical Systems (BES) as a technique to measure microbial metabolism (which produces electrical current and redox changes) and distinguish between potential abiotic and biotic responses in environmental samples. Samples from inhabited niches should contain everything necessary to produce current, that is, catalysts (microorganisms) and fuel (nutrients).
View Article and Find Full Text PDFWith growing interest in exploring ocean worlds, such as Europa and Enceladus, there is a fundamental need to develop liquid-based analytical techniques capable of handling high salinity samples while performing both bulk and trace species measurements. In this context, CE with capacitively coupled contactless conductivity detection (CE-C D) has tremendous potential. One of its advantages is that this combination allows the detection of a wide number of charged species (both organic and inorganic) without the need of derivatization.
View Article and Find Full Text PDFFor decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions.
View Article and Find Full Text PDFThis article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction.
View Article and Find Full Text PDFOne of the most habitable environments in the Solar System outside of Earth may exist underneath the ice on Europa. In the near future, our best chance to look for chemical signatures of a habitable environment (or life itself) will likely be at the inhospitable icy surface. Therefore, it is important to understand the ability of organic signatures of life and life itself to persist under simulated europan surface conditions.
View Article and Find Full Text PDFThe successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present.
View Article and Find Full Text PDFJ Microbiol Methods
September 2013
Bacillus subtilis spores were deposited in high-density single layers on metal, glass, and polymer substrates using vacuum filtration followed by a wetted filter transfer step. Quantitative analysis of spore transfer was performed using culture-based and germinability assays, and spore distributions were observed with electron microscopy.
View Article and Find Full Text PDFThe reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy.
View Article and Find Full Text PDF