Publications by authors named "Aaron N Johnson"

Mitotic exit is a necessary step for highly specialized cells to terminally differentiate and acquire unique functions. The FUCCI system can be used to visualize mitotic and post-mitotic cells during development and regeneration in both live organisms and fixed tissues. Here we describe a Fly-FUCCI protocol for assaying mitotic exit in Drosophila embryos.

View Article and Find Full Text PDF
Article Synopsis
  • Myosin-binding protein H (MyBP-H) is similar to MyBP-C and is found in skeletal muscle but has an unclear function, particularly in adult fast-twitch muscle.
  • Research indicates that MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, hinting at its role in muscle development, which is being further investigated.
  • While MyBP-H lacks key domains found in MyBP-C that modulate muscle contractility, experiments show it may function similarly by acting as a molecular "brake," raising new questions about muscle development roles.
View Article and Find Full Text PDF

Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell-cell connections.

View Article and Find Full Text PDF

Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation.

View Article and Find Full Text PDF

Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease.

View Article and Find Full Text PDF

Rare genetic disease discovery efforts typically lead to the identification of new disease genes. PreMIER ( Pre cision M edicine Integrated E xperimental R esources) is a collaborative platform designed to facilitate functional evaluation of human genetic variants in model systems, and to date the PreMIER Consortium has evaluated over 50 variants in patients with genetic disorders. To understand if could be used to identify pathogenic disease loci as part of the PreMIER Consortium, we used tissue-specific gene knockdown in the fly as a proof of principle experiment.

View Article and Find Full Text PDF

The authors present protocols for making fast, accurate, 3D velocity measurements in the stacks of coal-fired power plants. The measurements are traceable to internationally-recognized standards; therefore, they provide a rigorous basis for measuring and/or regulating the emissions from stacks. The authors used novel, five-hole, hemispherical, differential-pressure probes optimized for non-nulling (no-probe rotation) measurements.

View Article and Find Full Text PDF

Cell fate specification is essential for every major event of embryogenesis, and subsequent cell maturation ensures individual cell types acquire specialized functions. The mechanisms that regulate cell fate specification have been studied exhaustively, and each technological advance in developmental biology ushers in a new era of studies aimed at uncovering the most fundamental processes by which cells acquire unique identities. What is less appreciated is that mechanisms are in place to ensure cell identity is maintained throughout the life of the organism.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function.

View Article and Find Full Text PDF

Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit.

View Article and Find Full Text PDF

The mechanisms that determine the final topology of skeletal muscles remain largely unknown. We have been developing Drosophila body wall musculature as a model to identify and characterize the pathways that control muscle size, shape, and orientation during embryogenesis. Our working model argues muscle morphogenesis is regulated by (1) extracellular guidance cues that direct muscle cells toward muscle attachment sites, and (2) contact-dependent interactions between muscles and tendon cells.

View Article and Find Full Text PDF

NIST calibrates anemometers as a function of airspeed vector and turbulence intensity (). The vector capability (sometimes called "3-D") is particularly important for calibrating multi-hole differential-pressure probes that are often used to quantify pollution emitted by smokestacks of coal-burning electric power plants. Starting with a conventional "1-D" wind tunnel, we achieved vector and capabilities by installing translation/rotation stages and removable turbulence generators (grids or flags).

View Article and Find Full Text PDF

Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H).

View Article and Find Full Text PDF

Nascent myotubes undergo a dramatic morphological transformation during myogenesis, in which the myotubes elongate over several cell diameters and are directed to the correct muscle attachment sites. Although this process of myotube guidance is essential to pattern the musculoskeletal system, the mechanisms that control myotube guidance remain poorly understood. Using transcriptomics, we found that components of the Fibroblast Growth Factor (FGF) signaling pathway were enriched in nascent myotubes in embryos.

View Article and Find Full Text PDF

For skeletal muscle to produce movement, individual myofibers must form stable contacts with tendon cells and then assemble sarcomeres. The myofiber precursor is the nascent myotube, and during myogenesis the myotube completes guided elongation to reach its target tendons. Unlike the well-studied events of myogenesis, such as myoblast specification and myoblast fusion, the molecules that regulate myotube elongation are largely unknown.

View Article and Find Full Text PDF

Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip).

View Article and Find Full Text PDF

In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration.

View Article and Find Full Text PDF

Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development.

View Article and Find Full Text PDF

The gene networks regulating heart morphology and cardiac integrity are largely unknown. We previously reported a role for the heterotrimeric G protein gamma subunit 1 (Ggamma1) in mediating cardial-pericardial cell adhesion in Drosophila. Here we show G-oalpha47A and Gbeta13F cooperate with Ggamma1 to maintain cardiac integrity.

View Article and Find Full Text PDF

A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression.

View Article and Find Full Text PDF

During germ-band extension, Decapentaplegic (Dpp) signals from the dorsal ectoderm to maintain Tinman (Tin) expression in the underlying mesoderm. This signal specifies the cardiac field, and homologous genes (BMP2/4 and Nkx2.5) perform this function in mammals.

View Article and Find Full Text PDF

Intercellular communication is a critical process for all multicellular organisms, and communication among cells is required for proper embryonic development and adult physiology. Members of the Transforming Growth Factor-beta (TGF-beta) family of secreted proteins communicate information between cells via a complex signaling pathway, and family members are capable of inducing a wide range of cellular responses. The purpose of this review is to provide the reader with a broad introduction to our current understanding of three aspects of the TGF-beta family.

View Article and Find Full Text PDF

The experimental validation of genes predicted from genomic sequence and the identification of functions for these genes is an increasingly important task. We report a multidisciplinary analysis of CG3488, a predicted gene adjacent to Mothers against dpp in Drosophila melanogaster. We cloned and sequenced a cDNA corresponding to CG3488 and we show that it is expressed in embryos.

View Article and Find Full Text PDF

A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %.

View Article and Find Full Text PDF