Publications by authors named "Aaron N Best"

Healthy humans are proficient at maintaining stability when faced with diverse walking conditions, however, the control strategies that lead to this proficiency are unclear. Previous laboratory-based research has predominantly concluded that corrective stepping is the main strategy, but whether this finding holds when facing everyday obstacles outside of the laboratory is uncertain. We investigated changes in gait stability behaviour when walking outdoors in the summer and winter, hypothesizing that as ground conditions worsened in the winter, the stepping strategy would be hindered.

View Article and Find Full Text PDF

The portability of wearable inertial sensors makes them particularly suitable for measuring gait in real-world walking situations. However, it is unclear how well inertial sensors can measure and evaluate gait stability compared to traditional laboratory-based optical motion capture. This study investigated whether an inertial sensor-based motion-capture suit could accurately assess gait stability.

View Article and Find Full Text PDF

At the typical walking speeds of healthy humans, step placement seems to be the primary strategy to maintain gait stability, with ankle torques and upper body momentum providing additional compensation. The average walking speeds of populations with an increased risk of falling, however, are much slower and may require differing control strategies. The purpose of this study was to analyse mediolateral gait stability and the contributions of the different control strategies at very slow walking speeds.

View Article and Find Full Text PDF

Human bipedal gait is exceptionally stable, but the underlying strategies to maintain stability are unclear, especially in the frontal plane. Our study investigated balance strategies of healthy adults subjected to continuous mediolateral oscillations at the trunk during walking. We used a backpack with a passive inverted pendulum to create perturbations that were fixed, in-phase or out-of-phase with subjects' trunk.

View Article and Find Full Text PDF