Publications by authors named "Aaron Mychack"

Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively.

View Article and Find Full Text PDF

is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for mutants with defects in envelope integrity and cell division.

View Article and Find Full Text PDF

Antibiotic resistance in bacterial pathogens is an ongoing public health concern. The arylomycins are a class of natural product antibiotics that target the type I signal peptidase, which carries out the terminal step in protein secretion. Here, we used transposon sequencing (Tn-Seq) to profile the effects of the optimized arylomycin derivative G0775 in Staphylococcus aureus.

View Article and Find Full Text PDF

Synthetic lethality occurs when inactivation of two genes is lethal but inactivation of either single gene is not. This phenomenon provides an opportunity for efficient compound discovery. Using differential growth screens, one can identify biologically active compounds that selectively inhibit proteins within the synthetic lethal network of any inactivated gene.

View Article and Find Full Text PDF

Nearly a quarter of the genome encodes for inner membrane proteins of which approximately a third have unassigned or poorly understood function. We had previously demonstrated that the synergy between the functional roles of the inner membrane-spanning YciB and the inner membrane lipoprotein DcrB, is essential in maintaining cell envelope integrity. In cells, the abundant outer membrane lipoprotein, Lpp, mislocalizes to the inner membrane where it forms toxic linkages to peptidoglycan.

View Article and Find Full Text PDF

The bacterial cytoplasmic membrane is a principal site of protein translocation, lipid and peptidoglycan biogenesis, signal transduction, transporters and energy generating components of the respiratory chain. Although 25-30% of bacterial proteomes consist of membrane proteins, a comprehensive understanding of their influence on fundamental cellular processes is incomplete. Here, we show that YciB and DcrB, two small cytoplasmic membrane proteins of previously unknown functions, play an essential synergistic role in maintaining cell envelope integrity of Escherichia coli.

View Article and Find Full Text PDF

Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH.

View Article and Find Full Text PDF