Publications by authors named "Aaron Michels"

Increasing evidence shows that pathogenic T cells in type 1 diabetes (T1D) that may have evaded negative selection recognize post-translational modified (PTM) epitopes of self-antigens. We have investigated the profiles of autoantibodies specifically targeting the deamidated epitopes of insulinoma antigen-2 extracellular domain (IA-2ec) to explore their relationship with T1D development. We compared the characteristics of autoantibodies targeting the IA-2ec Q>E epitopes (PTM IA-2ecA) as well as those targeting the IA-2ec unmodified epitopes (IA-2ecA) in participants across different stages of T1D development and in individuals with other types of diabetes and other kinds of autoimmunity.

View Article and Find Full Text PDF

Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes.

View Article and Find Full Text PDF

Context: Type 1 diabetes incidence continues to increase in children, especially among Hispanic Whites (HW).

Objective: We investigated the clinical, immunologic, and genetic characteristics of HW and Non-Hispanic White (NHW) children that presented at type 1 diabetes diagnosis.

Methods: In this single-center, observational study, children who were diagnosed with type 1 diabetes (<20 years old) and tested for islet autoantibodies within 1 year of diagnosis were included in the study and divided into two groups by Hispanic ethnicity.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing β-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the β-cell surface. This unique molecular target offers the potential to shield β-cells against autoimmune attacks in T1D.

View Article and Find Full Text PDF

T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D).

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a chronic autoimmune disease that attacks the insulin-producing b cells of the pancreatic islets. Autoantibodies to b cell proteins typically appear in the circulation years before disease onset, and serve as the most accurate biomarkers of T1D risk. Our laboratory has recently discovered novel b cell proteins comprising hybrid proinsulin:islet amyloid polypeptide peptides (IAPP).

View Article and Find Full Text PDF

To assess whether the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines or breakthrough infection rates differ between patients with type 1 diabetes (T1D) and control subjects. A prospective 12-month follow-up of 27 adults with T1D and 89 control subjects who received at least two doses of either the mRNA-1273 or BNT162b2 vaccine. Primary outcomes: total antibodies against the receptor-binding domain and neutralizing antibodies.

View Article and Find Full Text PDF

Importance: Treatment with immune checkpoint inhibitors (ICIs) has increased survival in patients with advanced malignant melanoma but can be associated with a wide range of immune-related adverse events (irAEs). The role of human leukocyte antigen (HLA)-DR alleles in conferring irAE risk has not been well studied.

Objective: To evaluate the association between irAEs and treatment response, survival, and the presence of HLA-DR alleles after ICI therapy in advanced melanoma.

View Article and Find Full Text PDF

Type 1 diabetes is a polygenic disease that results in an autoimmune response directed against insulin-producing beta cells. is a known high-risk type 1 diabetes associated gene expressed in both immune- and pancreatic beta cells, but how genes affect the development of autoimmune diabetes is largely unknown. We employed CRISPR/Cas9 technology to generate a functional knockout of in human pluripotent stem cells (hPSC) followed by differentiating stem-cell-derived beta-like cells (sBC) and detailed phenotypical analyses.

View Article and Find Full Text PDF

T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-β chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.

View Article and Find Full Text PDF

Acquired lipodystrophy is often characterized as an idiopathic subtype of lipodystrophy. Despite suspicion of an immune-mediated pathology, biomarkers such as autoantibodies are generally lacking. Here, we used an unbiased proteome-wide screening approach to identify autoantibodies to the adipocyte-specific lipid droplet protein perilipin 1 (PLIN1) in a murine model of autoimmune polyendocrine syndrome type 1 (APS1).

View Article and Find Full Text PDF

While progress has been made toward understanding mechanisms that lead to the development of autoimmunity, there is less knowledge regarding protective mechanisms from developing such diseases. For example, in type 1 diabetes (T1D), the immune-mediated form of diabetes, the role of pathogenic T cells in the destruction of pancreatic islets is well characterized, but immune-mediated mechanisms that contribute to T1D protection have not been fully elucidated. One potential protective mechanism includes the suppression of immune responses by regulatory CD4 T cells (Tregs) that recognize self-peptides from islets presented by human leukocyte antigen (HLA) class II molecules.

View Article and Find Full Text PDF

T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells.

View Article and Find Full Text PDF

Cytotoxic CD8 T lymphocytes play a central role in the tissue destruction of many autoimmune disorders. In type 1 diabetes (T1D), insulin and its precursor preproinsulin are major self-antigens targeted by T cells. We comprehensively examined preproinsulin specificity of CD8 T cells obtained from pancreatic islets of organ donors with and without T1D and identified epitopes throughout the entire preproinsulin protein and defective ribosomal products derived from preproinsulin messenger RNA.

View Article and Find Full Text PDF

Type 1 diabetes results from an autoimmune attack directed at pancreatic beta cells predominantly mediated by T cells. Transplantation of stem cell derived beta-like cells (sBC) have been shown to rescue diabetes in preclinical animal models. However, how sBC will respond to an inflammatory environment with diabetogenic T cells in a strict human setting has not been determined.

View Article and Find Full Text PDF

Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells.

View Article and Find Full Text PDF

As diabetes is a risk factor for severe symptoms, hospitalization, and death with COVID-19 disease, we aimed to assess the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in children and adults with and without type 1 diabetes in Colorado during 2020. We developed a highly sensitive and specific test for antibodies against SARS-CoV-2 and measured the antibodies in children and adults with new-onset ( = 129) and established type 1 diabetes ( = 94) seen for routine diabetes care at our center between January and October 2020. The antibodies were also measured in 562 children and 102 adults from the general population of Colorado.

View Article and Find Full Text PDF

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. In type 1 diabetes, hybrid insulin peptides (HIPs) are implicated in the T-cell-mediated destruction of insulin-producing β-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms.

View Article and Find Full Text PDF

T cells are an integral component of the adaptive immune response via the recognition of peptides by the cell surface-expressed T cell receptor (TCR). Rearrangement of the TCR genes results in a highly polymorphic repertoire on the T cells within a given individual. Although the diverse repertoire is beneficial for immune responses to foreign pathogens, recognition of self-peptides by T cells can contribute to the development of autoimmune disorders.

View Article and Find Full Text PDF

Purpose Of Review: To summarize a new form of autoimmune diabetes as an adverse event of specific cancer immunotherapies. Immune checkpoint inhibitors are revolutionary treatments in advanced cancers; however, they can cause type 1 diabetes following treatment with these state-of-the-art therapies.

Recent Findings: A review of the literature showed that this new form of autoimmune diabetes has significant similarities with childhood-onset type 1 diabetes but also some distinctions.

View Article and Find Full Text PDF