We report a high power quasi-continuous-wave (QCW) 620 nm laser from an external cavity diamond Raman laser utilizing intracavity frequency doubling in lithium triborate. Output power of 30 W for durations of 0.25 ms at 15% conversion efficiency was achieved with a beam quality factor M = 1.
View Article and Find Full Text PDFHigh average power lasers with high beam quality are critical for emerging applications in industry and research for defense, materials processing, and space applications. However, overcoming thermal effects in the gain medium remains the key challenge for increasing laser brightness at high powers. Here we report a means for increasing the beam brightness of high-power continuous-wave (CW) beams based on external cavity Raman lasers using diamond, a material with thermal properties far superior to any other laser material.
View Article and Find Full Text PDFNonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined.
View Article and Find Full Text PDFWe report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode output power in the wavelength range from 1483 to 1488 nm at a conversion efficiency of 21%. Stable single longitudinal mode operation was achieved over the whole tuning range at low power (0.
View Article and Find Full Text PDFWe report a quasi-continuous-wave external cavity Raman laser based on potassium yttrium tungstate (KYW). Laser output efficiency and spectrum are severely affected by the presence of high gain Raman modes of low frequency (< 250 cm) that are characteristic of this crystal class. Output spectra contained frequency combs spaced by the low frequency modes but with the overall pump-to-Stokes conversion efficiency at least an order of magnitude lower than that typically obtained in other crystal Raman lasers.
View Article and Find Full Text PDFThe theoretical analysis of stimulated Raman scattering (SRS) in crystalline amplifiers with a tightly-focused pump geometry is presented. We predict the minimum Stokes seed power required for an efficient Raman power amplifier and verify this result experimentally. Conversion of a pump to a Stokes beam in a single-pass diamond amplifier is demonstrated using nanosecond pulses with gains of 5.
View Article and Find Full Text PDFWe report an analytical model describing power and efficiency of a 23 W quasi-continuous-wave diamond Raman laser. The model guides the optimization of the first Stokes output power as a function of resonator and crystal parameters. We show that, in the limit of a weak thermal lens, efficient operation requires strong focussing, low output coupling and low-absorption crystals.
View Article and Find Full Text PDFQuasi-cw pumping is used to investigate the high-power characteristics of cw beam conversion in diamond Raman lasers (DRLs). We show that thermal gradients establish in DRLs at approximately 50 μs for a 100 μm pump beam diameter, and thus that the steady state for cw operation can be reached within the 100-300 μs pulse duration of conventional quasi-cw pump laser technology. Using this approach, a steady-state on-time output power of 108 W was obtained from an external-cavity DRL during 250 μs pulses with 34% conversion efficiency.
View Article and Find Full Text PDFThe transient thermal lens in a high-average power double metal tungstate Raman laser has been investigated. An external cavity potassium gadolinium tungstate (KGW) laser designed for second-Stokes output was burst-pumped with up to 46 W of average power at a pulse repetition rate of 38 kHz. At low duty-cycle, the laser generated up to 18 W of on-time average Raman power with a conversion efficiency of 40%.
View Article and Find Full Text PDFWe report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X(1)(') principal direction of the thermal expansion tensor scales linearly with Raman power.
View Article and Find Full Text PDFWe present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers.
View Article and Find Full Text PDFWe demonstrate continuous-wave (cw) operation of a diamond Raman laser at 1240 nm in an external cavity configuration. The output power increased linearly with pump power with a 49.7% slope efficiency and reached 10.
View Article and Find Full Text PDFOur anisotropic rate equation model outlines the relationship between the relaxation dynamics in a four-level solid-state laser and its anisotropic gain properties. Anisotropic pump rates and stimulated emission cross-sections were included to account for specific atom orientations in the gain material. The model is compared with experimental measurements of two relaxation oscillation frequencies which are related to the anisotropic atom-laser interaction in orthogonally polarized dual-mode lasers.
View Article and Find Full Text PDFWe investigate the polarisation-mode dynamics and Lamb's mode coupling constant for orthogonally polarised laser states in a dual-mode (100)-cut Nd:YAG laser with feedback, and compare with an anisotropic rate equation model. The anisotropic (100)-cut Nd:YAG exhibits thermally-induced depolarisation and polarisation-mode coupling dependent on the pump polarisation, crystal angle and laser polarisation directions. Here, the links between the depolarisation and polarisation-mode coupling are discussed with reference to a rate equation model which includes gain anisotropy in a quasi-isotropic laser cavity.
View Article and Find Full Text PDF