Surgical removal of primary tumors was shown to reverse tumor-mediated immune suppression in pre-clinical models with metastatic disease. However, how cytoreductive surgery in the metastatic setting modulates the immune responses in patients, especially in the context of immune checkpoint therapy (ICT)-containing treatments is not understood. Here, we report the first prospective, non-comparative clinical trial to evaluate the feasibility, clinical benefits, and immunologic changes of combining three different ICT-containing strategies with cytoreductive surgery or biopsy for patients with metastatic clear cell renal cell carcinoma (mccRCC).
View Article and Find Full Text PDFHematoxylin and eosin (H&E) is a common and inexpensive histopathology assay. Though widely used and information-rich, it cannot directly inform about specific molecular markers, which require additional experiments to assess. To address this gap, we present a deep-learning framework that computationally imputes the expression and localization of dozens of proteins from H&E images.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD.
View Article and Find Full Text PDFAims/hypothesis: Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease in the USA and worldwide. Animal models have taught us much about DKD mechanisms, but translation of this knowledge into treatments for human disease has been slowed by the lag in our molecular understanding of human DKD.
Methods: Using our Spatial TissuE Proteomics (STEP) pipeline (comprising curated human kidney tissues, multiplexed immunofluorescence and powerful analysis tools), we imaged and analysed the expression of 21 proteins in 23 tissue sections from individuals with diabetes and healthy kidneys (n=5), compared to those with DKDIIA, IIA-B and IIB (n=2 each) and DKDIII (n=1).
Heterogeneous resistance to immunotherapy remains a major challenge in cancer treatment, often leading to disease progression and death. Using CITE-seq and matched 40-plex PhenoCycler tissue imaging, we performed longitudinal multimodal single-cell analysis of tumors from metastatic melanoma patients with innate resistance, acquired resistance, or response to immunotherapy. We established the multimodal integration toolkit to align transcriptomic features, cellular epitopes, and spatial information to provide deeper insights into the tumors.
View Article and Find Full Text PDFBackground: Kidney allograft rejections are orchestrated by a variety of immune cells. Because of the complex histopathologic features, accurate pathological diagnosis poses challenges even for expert pathologists. The objective of this study was to unveil novel spatial indices associated with transplant rejection by using a spatial bioinformatic approach using 36-plex immunofluorescence image data.
View Article and Find Full Text PDFThe spatial localisation of immune cells within tumours are key to understand the intercellular communications that can dictate clinical outcomes. Here, we demonstrate an analysis pipeline for highly multiplexed CODEX data to phenotype and profile spatial features and interactions in NSCLC patients that subsequently received PD1 axis immunotherapy. We found that regulatory T cells (Tregs) are enriched in non-responding patients and this was consistent with their localization within stromal and peripheral tumour-margins.
View Article and Find Full Text PDFSubcellular protein localization is important for understanding functional states of cells, but measuring and quantifying this information can be difficult and typically requires high-resolution microscopy. In this work, we develop a metric to define surface protein polarity from immunofluorescence (IF) imaging data and use it to identify distinct immune cell states within tumor microenvironments. We apply this metric to characterize over two million cells across 600 patient samples and find that cells identified as having polar expression exhibit characteristics relating to tumor-immune cell engagement.
View Article and Find Full Text PDFBACKGROUNDPemphigus, a rare autoimmune bullous disease mediated by antidesmoglein autoantibodies, can be controlled with systemic medication like rituximab and high-dose systemic corticosteroids combined with immunosuppressants. However, some patients continue to experience chronically recurrent blisters in a specific area and require long-term maintenance systemic therapy.METHODSSkin with chronic blisters was obtained from patients with pemphigus.
View Article and Find Full Text PDFAtherosclerosis is an inflammatory process resulting in the deposition of cholesterol and cellular debris, narrowing of the vessel lumen and clot formation. Characterization of the morphology and vulnerability of the lesion is essential for effective clinical management. Here, near-infrared auto-photoacoustic (NIRAPA) imaging is shown to detect plaque components and, when combined with ultrasound imaging, to differentiate stable and vulnerable plaque.
View Article and Find Full Text PDFAtherosclerosis is an inflammatory process resulting in the deposition of cholesterol and cellular debris, narrowing of the vessel lumen and clot formation. Characterization of the morphology and vulnerability of the lesion is essential for effective clinical management. Photoacoustic imaging has sufficient penetration and sensitivity to map and characterize human atherosclerotic plaque.
View Article and Find Full Text PDFMotivation: Spatial proteomics data have been used to map cell states and improve our understanding of tissue organization. More recently, these methods have been extended to study the impact of such organization on disease progression and patient survival. However, to date, the majority of supervised learning methods utilizing these data types did not take full advantage of the spatial information, impacting their performance and utilization.
View Article and Find Full Text PDFMultiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly to collect, limiting its applications, especially in clinical settings.
View Article and Find Full Text PDFThe composition and activation status of the cellular milieu contained within the tumour microenvironment (TME) is becoming increasingly recognized as a driving factor for immunotherapy response. Here, we employed multiplex immunohistochemistry (mIHC), and digital spatial profiling (DSP) to capture the targeted immune proteome and transcriptome of tumour and TME compartments from an immune checkpoint inhibitor (ICI)-treated (n = 41) non-small cell lung cancer (NSCLC) patient cohort. We demonstrate by mIHC that the interaction of CD68 macrophages with PD1 , FoxP3 cells is enriched in ICI refractory tumours (p = 0.
View Article and Find Full Text PDFVascular endothelial cell (EC) plasticity plays a critical role in the progression of atherosclerosis by giving rise to mesenchymal phenotypes in the plaque lesion. Despite the evidence for arterial stiffening as a major contributor to atherosclerosis, the complex interplay among atherogenic stimuli in vivo has hindered attempts to determine the effects of extracellular matrix (ECM) stiffness on endothelial-mesenchymal transition (EndMT). To study the regulatory effects of ECM stiffness on EndMT, an in vitro model is developed in which human coronary artery ECs are cultured on physiological or pathological stiffness substrates.
View Article and Find Full Text PDFAlthough literature suggests that resistance to TNF inhibitor (TNFi) therapy in patients with ulcerative colitis (UC) is partially linked to immune cell populations in the inflamed region, there is still substantial uncertainty underlying the relevant spatial context. Here, we used the highly multiplexed immunofluorescence imaging technology CODEX to create a publicly browsable tissue atlas of inflammation in 42 tissue regions from 29 patients with UC and 5 healthy individuals. We analyzed 52 biomarkers on 1,710,973 spatially resolved single cells to determine cell types, cell-cell contacts, and cellular neighborhoods.
View Article and Find Full Text PDFIn the development of new materials, the focus nowadays is increasingly on their relevance with regard to lightweight construction or environmental compatibility. The idea of a lightweight sandwich panel was inspired by an increasing number of cosmetic accessories that use the fibers of the loofah plant, a rapidly renewable, light, fibrous raw material. The aim of the study was to develop a fiber composite panel based on the fibers of the loofah plant () as core material and wooden veneer as the skin layer to be used in areas of lead construction.
View Article and Find Full Text PDFWhen properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body.
View Article and Find Full Text PDFBackground And Aims: Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems.
View Article and Find Full Text PDFPurpose: Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy.
Experimental Design: A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects.
Diagnosis of organ transplant rejection relies upon biopsy approaches to confirm alloreactive T cell infiltration in the graft. Immune molecular monitoring is under investigation to screen for rejection, though these techniques have suffered from low specificity and lack of spatial information. ImmunoPET utilizing antibodies conjugated to radioisotopes has the potential to improve early and accurate detection of graft rejection.
View Article and Find Full Text PDFSemin Cancer Biol
September 2022
Radiological imaging is an integral component of cancer care, including diagnosis, staging, and treatment response monitoring. It contains rich information about tumor phenotypes that are governed not only by cancer cellintrinsic biological processes but also by the tumor microenvironment, such as the composition and function of tumor-infiltrating immune cells. By analyzing the radiological scans using a quantitative radiomics approach, robust relations between specific imaging and molecular phenotypes can be established.
View Article and Find Full Text PDF