Background & Aims: Organs of the gastrointestinal tract contain tissue-resident immune cells that function during tissue development, homeostasis, and disease. However, most published human organoid model systems lack resident immune cells, thus limiting their potential as disease avatars. For example, human intestinal organoids (HIOs) derived from pluripotent stem cells contain epithelial and various mesenchymal cell types but lack immune cells.
View Article and Find Full Text PDFThe gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine.
View Article and Find Full Text PDFUnlabelled: To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.
View Article and Find Full Text PDFIntroduction: Heterogeneity in reported outcomes of infants with oesophageal atresia (OA) with or without tracheo-oesophageal fistula (TOF) prevents effective data pooling. Core outcome sets (COS) have been developed for many conditions to standardise outcome reporting, facilitate meta-analysis and improve the relevance of research for patients and families. Our aim is to develop an internationally-agreed, comprehensive COS for OA-TOF, relevant from birth through to transition and adulthood.
View Article and Find Full Text PDFDisruptions in foregut morphogenesis can result in life-threatening conditions where the trachea and esophagus fail to separate properly, such as esophageal atresia (EA) and tracheoesophageal fistulas (TEF). The developmental basis of these congenital anomalies is poorly understood, but recent genome sequencing reveals that variants in intracellular trafficking genes are enriched in EA/TEF patients. Here, we confirm that mutation of orthologous genes in disrupts trachea-esophageal separation similar to EA/TEF patients.
View Article and Find Full Text PDFBackground: Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets.
View Article and Find Full Text PDFXenbase (https://www.xenbase.org/), the Xenopus model organism knowledgebase, is a web-accessible resource that integrates the diverse genomic and biological data from research on the laboratory frogs Xenopus laevis and Xenopus tropicalis.
View Article and Find Full Text PDFBackground: Proteins of the TGFβ family, which are largely studied as homodimers, are also known to form heterodimers with biological activity distinct from their component homodimers. For instance, heterodimers of bone morphogenetic proteins, including BMP2/BMP7, BMP2/BMP6, and BMP9/BMP10, among others, have illustrated the importance of these heterodimeric proteins within the context of TGFβ signaling.
Results: In this study, we have determined that mature GDF5 can be combined with mature BMP2 or BMP4 to form BMP2/GDF5 and BMP4/GDF5 heterodimer.
The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut.
View Article and Find Full Text PDFGenotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T.
View Article and Find Full Text PDFVentx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage.
View Article and Find Full Text PDFWNT/β-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How β-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors.
View Article and Find Full Text PDFDevelopment of visceral organs such as the esophagus, lung, liver and stomach are coordinated by reciprocal signaling interactions between the endoderm and adjacent mesoderm cells in the fetal foregut. Although the recent successes in recapitulating developmental signaling in vitro has enabled the differentiation of human pluripotent stem cells (hPSCs) into various types of organ-specific endodermal epithelium, the generation of organ-specific mesenchyme has received much less attention. This is a major limitation in ongoing efforts to engineer complex human tissue.
View Article and Find Full Text PDFNormal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching.
View Article and Find Full Text PDFEsophageal atresias/tracheoesophageal fistulas (EA/TEF) are rare congenital anomalies caused by aberrant development of the foregut. Previous studies indicate that rare or genetic variants significantly contribute to EA/TEF risk, and most individuals with EA/TEF do not have pathogenic genetic variants in established risk genes. To identify the genetic contributions to EA/TEF, we performed whole genome sequencing of 185 trios (probands and parents) with EA/TEF, including 59 isolated and 126 complex cases with additional congenital anomalies and/or neurodevelopmental disorders.
View Article and Find Full Text PDFBackground: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease.
Results: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease.
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic.
View Article and Find Full Text PDFCell Stem Cell
December 2021
Organogenesis is orchestrated by the interaction of different embryonic tissues. Recent reports in Cell Stem Cell (Silva et al., 2021; Rossi et al.
View Article and Find Full Text PDFHuman organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue.
View Article and Find Full Text PDFThe gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development.
View Article and Find Full Text PDF