Publications by authors named "Aaron M Schankler"

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices.

View Article and Find Full Text PDF

The niobium oxide polymorph T-NbO has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs.

View Article and Find Full Text PDF

The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates from asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this Letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation.

View Article and Find Full Text PDF

The bulk photovoltaic effect in noncentrosymmetric materials is an intriguing physical phenomenon that holds potential for high-efficiency energy harvesting. Here, we study the shift current bulk photovoltaic effect in the transition-metal dichalcogenide MoS. We present a simple automated method to guide materials design and use it to uncover a distortion to monolayer 2-MoS that dramatically enhances the integrated shift current.

View Article and Find Full Text PDF