We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons.
View Article and Find Full Text PDFUnlabelled: The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury.
View Article and Find Full Text PDFEstrogen receptor-positive (ER) breast cancer exhibits a strong bone tropism in metastasis. How the bone microenvironment (BME) impacts ER signaling and endocrine therapy remains poorly understood. Here, we discover that the osteogenic niche transiently and reversibly reduces ER expression and activities specifically in bone micrometastases (BMMs), leading to endocrine resistance.
View Article and Find Full Text PDFMany solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches.
View Article and Find Full Text PDFMigration and invasion are key properties of metastatic cancer cells. These properties can be acquired through intrinsic reprogramming processes such as epithelial-mesenchymal transition. In this study, we discovered an alternative "migration-by-tethering" mechanism through which cancer cells gain the momentum to migrate by adhering to mesenchymal stem cells or osteoblasts.
View Article and Find Full Text PDFPolyclonal metastases frequently arise from clusters of circulating tumor cells (CTCs). CTC clusters metastasize better than single CTCs, but the underlying molecular mechanisms are poorly understood. Here, we show that polyclonal metastatic seeds exhibit higher resistance to natural killer (NK) cell killing.
View Article and Find Full Text PDFBreast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis.
View Article and Find Full Text PDF