Publications by authors named "Aaron M King"

We report a novel magnetically-facilitated approach to produce 1-D 'nano-necklace' arrays composed of 0-D magnetic nanoparticles, which are assembled and coated with an oxide layer to produce semi-flexible core@shell type structures. These 'nano-necklaces' demonstrate good MRI relaxation properties despite their coating and permanent alignment, with low field enhancement due to structural and magnetocrystalline anisotropy.

View Article and Find Full Text PDF

Nano-sized titanium dioxide (nTiO) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO and nTiO extracted from consumer products upon the marine dominant cyanobacterium, , and natural marine communities at environmentally relevant and supra-environmental concentrations (, 1 μg L to 100 mg L).

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is one of the most widely-used non-invasive clinical imaging tools, producing detailed anatomical images whilst avoiding side effects such as trauma or X-ray radiation exposure. In this article, a new approach to non-invasive monitoring of drug release from a delivery vehicle via MRI was developed, using pH-responsive Eudragit L100 and S100 fibres encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and carmofur (a drug used in the treatment of colon cancer). Fibres were prepared by electrospinning, and found to be smooth and cylindrical with diameters of 645 ± 225 nm for L100 and 454 ± 133 nm for S100.

View Article and Find Full Text PDF

The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r values reaching 434.

View Article and Find Full Text PDF