Publications by authors named "Aaron M Fluitt"

Amyloid aggregates of human islet amyloid polypeptide (hIAPP or human amylin) have long been implicated in the development of type II diabetes. While hIAPP is known to aggregate into amyloid fibrils, it is the early-stage prefibrillar species that have been proposed to be cytotoxic. A detailed picture of the early-stage aggregation process and relevant intermediates would be valuable in the development of effective therapeutics.

View Article and Find Full Text PDF

Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed.

View Article and Find Full Text PDF

The intriguing behavior of a wide variety of physical systems, ranging from amorphous solids or glasses to proteins, is a direct manifestation of underlying free energy landscapes riddled with local minima separated by large barriers. Exploring such landscapes has arguably become one of statistical physics's great challenges. A new method is proposed here for uniform sampling of rugged free energy surfaces.

View Article and Find Full Text PDF

Polyglutamine (polyQ) sequences are found in a variety of proteins, and mutational expansion of the polyQ tract is associated with many neurodegenerative diseases. We study the amyloid fibril structure and aggregation kinetics of K2Q24K2W, a model polyQ sequence. Two structures have been proposed for amyloid fibrils formed by polyQ peptides.

View Article and Find Full Text PDF

The model herein aims to explore the dynamics of the spread of tuberculosis (TB) in an informal settlement or township. The population is divided into households of various sizes and also based on commuting status. The model dynamics distinguishes between three distinct social patterns: the exposure of commuters during travel, random diurnal interaction and familial exposure at night.

View Article and Find Full Text PDF