Publications by authors named "Aaron LeBlanc"

Komodo dragons (Varanus komodoensis) are the largest extant predatory lizards and their ziphodont (serrated, curved and blade-shaped) teeth make them valuable analogues for studying tooth structure, function and comparing with extinct ziphodont taxa, such as theropod dinosaurs. Like other ziphodont reptiles, V. komodoensis teeth possess only a thin coating of enamel that is nevertheless able to cope with the demands of their puncture-pull feeding.

View Article and Find Full Text PDF

Background: Frailty is a robust predictor of poor outcomes among patients with chronic obstructive pulmonary disease yet is not measured in routine practice. We determined barriers and facilitators to measuring frailty in a hospital setting, designed and implemented a frailty-focused education intervention, and measured accuracy of frailty screening before and after education.

Methods: We conducted a pilot cross-sectional mixed-methods study on an inpatient respiratory ward over 6 months.

View Article and Find Full Text PDF

Parrotfish play important ecological roles in coral reef and seagrass communities across the globe. Their dentition is a fascinating object of study from an anatomical, functional and evolutionary point of view. Several species maintained non-interlocked dentition and browse on fleshy algae, while others evolved a characteristic beak-like structure made of a mass of coalesced teeth that they use to scrape or excavate food off hard limestone substrates.

View Article and Find Full Text PDF

Several amniote lineages independently evolved multiple rows of marginal teeth in response to the challenge of processing high fiber plant matter. Multiple tooth rows develop via alterations to tooth replacement in captorhinid reptiles and ornithischian dinosaurs, but the specific changes that produce this morphology differ, reflecting differences in their modes of tooth attachment. To further understand the mechanisms by which multiple tooth rows can develop, we examined this feature in Endothiodon bathystoma, a member of the only synapsid clade (Anomodontia) to evolve a multi-rowed marginal dentition.

View Article and Find Full Text PDF

Snake fangs are an iconic exemplar of a complex adaptation, but despite striking developmental and morphological similarities, they probably evolved independently in several lineages of venomous snakes. How snakes could, uniquely among vertebrates, repeatedly evolve their complex venom delivery apparatus is an intriguing question. Here we shed light on the repeated evolution of snake venom fangs using histology, high-resolution computed tomography (microCT) and biomechanical modelling.

View Article and Find Full Text PDF

Dinosaurs possess a form of tooth attachment wherein an unmineralized periodontal ligament suspends each tooth within a socket, similar to the condition in mammals and crocodylians. However, little information is known about tooth attachment and implantation in their close relatives, the silesaurids. We conducted a histological survey of several silesaurid taxa to determine the nature of tooth attachment in this phylogenetically and paleoecologically important group of archosaurs.

View Article and Find Full Text PDF

Squamates present a unique challenge to the homology and evolution of tooth attachment tissues. Their stereotypically pleurodont teeth are fused in place by a single "bone of attachment", with seemingly dubious homology to the three-part tooth attachment system of mammals and crocodilians. Despite extensive debate over the interpretations of squamate pleurodonty, its phylogenetic significance, and the growing evidence from fossil amniotes for the homology of tooth attachment tissues, few studies have defined pleurodonty on histological grounds.

View Article and Find Full Text PDF

We explored patterns, rates and unexpected socio-ecological consequences of tooth replacement in serrasalmids and characids of the Peruvian Amazon using microcomputed tomography. Of 24 specimens collected in February 2019, representing a mix of red-bellied piranha Pygocentrus nattereri, redeye piranha Serrasalmus rhombeus, silver dollar fish Ctenobrycon hauxwellianus and mojara Astyanax abramis, six individuals possessed edentulous jaw quadrants. On average, 22.

View Article and Find Full Text PDF

Permian bolosaurid parareptiles are well-known for having complex tooth crowns and complete tooth rows in the jaws, in contrast to the comparatively simple teeth and frequent replacement gaps in all other Paleozoic amniotes. Analysis of the specialized dentition of the bolosaurid parareptiles from North America and from Russia, utilizing a combination of histological and tomographic data, reveals unusual patterns of tooth development and replacement. The data confirm that bolosaurid teeth have thecodont implantation with deep roots, the oldest known such example among amniotes, and independently evolved among much younger archosauromorphs (including dinosaurs and crocodilians) and among synapsids (including mammals).

View Article and Find Full Text PDF

Lateralized behaviors have been reported in a variety of extant vertebrates, including birds and reptiles [1-3] and non-human mammals [4-6]. However, evidence of lateralized behaviors in extinct vertebrates is rare, primarily because of the difficulty of identifying such behaviors with confidence in fossils. In rare instances, paleontologists can infer asymmetry in predatory or foraging behavior, including predation scars on trilobites [7], directionality of invertebrate traces [8], and even behavioral asymmetry in fossil non-human primates [9, 10].

View Article and Find Full Text PDF

Rare occurrences of dinosaurian embryos are punctuated by even rarer preservation of their development. Here we report on dental development in multiple embryos of the Early Jurassic Lufengosaurus from China, and compare these to patterns in a hatchling and adults. Histology and CT data show that dental formation and development occurred early in ontogeny, with several cycles of tooth development without root resorption occurring within a common crypt prior to hatching.

View Article and Find Full Text PDF

The early Permian mesosaurs were the first amniotes to re-invade aquatic environments. One of their most controversial and puzzling features is their distinctive caudal anatomy, which has been suggested as a mechanism to facilitate caudal autotomy. Several researchers have described putative fracture planes in mesosaur caudal vertebrae - unossified regions in the middle of caudal vertebral centra - that in many extant squamates allow the tail to separate and the animal to escape predation.

View Article and Find Full Text PDF

Mammals and reptiles have evolved divergent adaptations for processing abrasive foods. Mammals have occluding, diphyodont dentitions with taller teeth (hypsodonty), more complex occlusal surfaces, continuous tooth eruption, and forms of prismatic enamel that prolong the functional life of each tooth [1, 2]. The evolution of prismatic enamel in particular was a key innovation that made individual teeth more resilient to abrasion in early mammals [2-4].

View Article and Find Full Text PDF

The development of the iliosacral joint (ISJ) in tetrapods represented a crucial step in the evolution of terrestrial locomotion. This structure is responsible for transferring forces between the vertebral column and appendicular skeleton, thus supporting the bodyweight on land. However, most research dealing with the water-to-land transition and biomechanical studies in general has focused exclusively on the articulation between the pelvic girdle and femur.

View Article and Find Full Text PDF

We describe the case of a previously healthy male patient who presented to a respiratory clinic with sinusitis, pulmonary cavities, and hemoptysis. Three weeks following a diagnosis of Granulomatosis with Polyangiitis (GPA) and initiation of immunosuppressive treatment, the patient suddenly developed a large pneumothorax that was complicated by empyema. In this report we discuss and highlight the rare pleural complications associated with GPA, and alert clinicians to monitor for these important complications even after disease-modifying treatment is initiated.

View Article and Find Full Text PDF

The fossil record of caenagnathid oviraptorosaurs consists mainly of their fused, complexly sculptured dentaries, but little is known about the growth and development of this diagnostic structure. Previous work has suggested that the ridges and grooves on the occlusal surface are either the vestiges of teeth and their alveoli or were adaptations to increase shearing action during mastication. In addition, the distinctiveness of the dentaries has led to their use for species-level taxonomy, without a complete understanding of their variation through ontogeny.

View Article and Find Full Text PDF

Purpose: Learner handover (LH) is the sharing of information about trainees between faculty supervisors. This scoping review aimed to summarize key concepts across disciplines surrounding the influence of prior performance information (PPI) on current performance ratings and implications for LH in medical education.

Method: The authors used the Arksey and O'Malley framework to systematically select and summarize the literature.

View Article and Find Full Text PDF

Teeth and dentitions contain many morphological characters which give them a particularly important weight in comparative anatomy, systematics, physiology and ecology. As teeth are organs that contain the hardest mineralized tissues vertebrates can produce, their fossil remains are abundant and the study of their anatomy in fossil specimens is of major importance in evolutionary biology. Comparative anatomy has long favored studies of dental characters rather than features associated with tooth attachment and implantation.

View Article and Find Full Text PDF

The mammalian dentition is uniquely characterized by a combination of precise occlusion, permanent adult teeth and a unique tooth attachment system. Unlike the ankylosed teeth in most reptiles, mammal teeth are supported by a ligamentous tissue that suspends each tooth in its socket, providing flexible and compliant tooth attachment that prolongs the life of each tooth and maintains occlusal relationships. Here we investigate dental ontogeny through histological examination of a wide range of extinct synapsid lineages to assess whether the ligamentous tooth attachment system is unique to mammals and to determine how it evolved.

View Article and Find Full Text PDF

The great diversity of dinosaurian tooth shapes and sizes, and in particular, the amazing dental complexity in derived ornithischians has attracted a lot of attention. However, the evolution of dental batteries in hadrosaurids and ceratopsids is difficult to understand without a broader comparative framework. Here we describe tooth histology and development in the "middle" Cretaceous ornithischian dinosaur Changchunsaurus parvus, a small herbivore that has been characterized as an early ornithopod, or even as a more basal ornithischian.

View Article and Find Full Text PDF

The transparency of soft tissue in Xenopus laevis tadpoles and the anterior-posterior orientation of their developing tooth germs in the upper jaw offer a unique opportunity for the in vivo charting of the first 15-20 days of the developing dentition. Twenty-two X. laevis tadpoles were anesthetized daily and their mouths opened to record the first appearance, position, and development of tooth germs in the upper jaw.

View Article and Find Full Text PDF

Continuous tooth replacement is common for tetrapods, but some groups of acrodont lepidosaurs have lost the ability to replace their dentition (monophyodonty). Acrodonty, where the tooth attaches to the apex of the jawbone, is an unusual form of tooth attachment that has been associated with the highly autapomorphic condition of monophyodonty. Beyond Lepidosauria, very little is known about the relationship between acrodonty and monophyodonty in other amniotes.

View Article and Find Full Text PDF

The first histological study of an entire hadrosaurid dental battery provides a comprehensive look at tooth movement within this complex structure. Previous studies have focused on isolated teeth, or in-situ batteries, but this is the first study to examine an entire dental battery of any dinosaur. The absence of direct tooth-to-tooth contact across the entire battery and a unique arrangement of the dental tissues in hadrosaurids led us to compare their teeth with the ever-growing incisors of mammals.

View Article and Find Full Text PDF

Squamates present a unique challenge to our understanding of dental evolution in amniotes because they are the only extant tooth-bearing group for which a ligamentous tooth attachment is considered to be absent. This has led to the assumption that mammals and crocodilians have convergently evolved a ligamentous tooth attachment, composed of root cementum, periodontal ligament, and alveolar bone, whereas squamates are thought to possess a single bone of attachment tissue that fuses teeth to the jaws. The identity and homology of tooth attachment tissues between squamates, crocodilians, and mammals have thus been a focal point of debate for decades.

View Article and Find Full Text PDF

Background: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals.

View Article and Find Full Text PDF